These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21764349)

  • 21. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cone-like bubble formation in ultrasonic cavitation field.
    Moussatov A; Granger C; Dubus B
    Ultrason Sonochem; 2003 Jul; 10(4-5):191-5. PubMed ID: 12818381
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device.
    Petosić A; Svilar D; Ivancević B
    Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Combined experimental and theoretical investigation of the gas bubble motion in an acoustic field.
    Ma X; Xing T; Huang B; Li Q; Yang Y
    Ultrason Sonochem; 2018 Jan; 40(Pt A):480-487. PubMed ID: 28946449
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatial study on a multibubble system for sonochemistry by laser-light scattering.
    Tuziuti T; Yasui K; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):73-7. PubMed ID: 15474955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental and theoretical studies on the movements of two bubbles in an acoustic standing wave field.
    Jiao J; He Y; Leong T; Kentish SE; Ashokkumar M; Manasseh R; Lee J
    J Phys Chem B; 2013 Oct; 117(41):12549-55. PubMed ID: 24098969
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Liquid compressibility effects during the collapse of a single cavitating bubble.
    Fuster D; Dopazo C; Hauke G
    J Acoust Soc Am; 2011 Jan; 129(1):122-31. PubMed ID: 21302994
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of the acoustic and bubble fields in insonified freeze-drying vials.
    Louisnard O; Cogné C; Labouret S; Montes-Quiroz W; Peczalski R; Baillon F; Espitalier F
    Ultrason Sonochem; 2015 Sep; 26():186-192. PubMed ID: 25800984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Numerical modelling of ultrasonic waves in a bubbly Newtonian liquid using a high-order acoustic cavitation model.
    Lebon GSB; Tzanakis I; Djambazov G; Pericleous K; Eskin DG
    Ultrason Sonochem; 2017 Jul; 37():660-668. PubMed ID: 28427680
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acoustic cavitation mechanism: a nonlinear model.
    Vanhille C; Campos-Pozuelo C
    Ultrason Sonochem; 2012 Mar; 19(2):217-20. PubMed ID: 21802973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A strict formulation of a nonlinear Helmholtz equation for the propagation of sound in bubbly liquids. Part II: Application to ultrasonic cavitation.
    Trujillo FJ
    Ultrason Sonochem; 2020 Jul; 65():105056. PubMed ID: 32172147
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rod-shaped cavitation bubble structure in ultrasonic field.
    Bai L; Wu P; Liu H; Yan J; Su C; Li C
    Ultrason Sonochem; 2018 Jun; 44():184-195. PubMed ID: 29680602
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Strongly interacting bubbles under an ultrasonic horn.
    Yasui K; Iida Y; Tuziuti T; Kozuka T; Towata A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jan; 77(1 Pt 2):016609. PubMed ID: 18351953
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Jet formation and shock wave emission during collapse of ultrasound-induced cavitation bubbles and their role in the therapeutic applications of high-intensity focused ultrasound.
    Brujan EA; Ikeda T; Matsumoto Y
    Phys Med Biol; 2005 Oct; 50(20):4797-809. PubMed ID: 16204873
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The secondary Bjerknes force between two gas bubbles under dual-frequency acoustic excitation.
    Zhang Y; Zhang Y; Li S
    Ultrason Sonochem; 2016 Mar; 29():129-45. PubMed ID: 26584991
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography.
    Bossy E; Padilla F; Peyrin F; Laugier P
    Phys Med Biol; 2005 Dec; 50(23):5545-56. PubMed ID: 16306651
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An ultrasonic air pump using an acoustic traveling wave along a small air gap.
    Koyama D; Wada Y; Nakamura K; Nishikawa M; Nakagawa T; Kihara H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):253-61. PubMed ID: 20040451
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ultrasonic liquid metal processing: The essential role of cavitation bubbles in controlling acoustic streaming.
    Lebon GSB; Tzanakis I; Pericleous K; Eskin D; Grant PS
    Ultrason Sonochem; 2019 Jul; 55():243-255. PubMed ID: 30733147
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Experimental study of transient paths to the extinction in sonoluminescence.
    Urteaga R; Dellavale D; Puente GF; Bonetto FJ
    J Acoust Soc Am; 2008 Sep; 124(3):1490-6. PubMed ID: 19045640
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).
    Rosselló JM; Dellavale D; Bonetto FJ
    Ultrason Sonochem; 2015 Jan; 22():59-69. PubMed ID: 24974006
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.