BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21764588)

  • 1. Selective inhibition of plant serine hydrolases by agrochemicals revealed by competitive ABPP.
    Kaschani F; Nickel S; Pandey B; Cravatt BF; Kaiser M; van der Hoorn RA
    Bioorg Med Chem; 2012 Jan; 20(2):597-600. PubMed ID: 21764588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A para-nitrophenol phosphonate probe labels distinct serine hydrolases of Arabidopsis.
    Nickel S; Kaschani F; Colby T; van der Hoorn RA; Kaiser M
    Bioorg Med Chem; 2012 Jan; 20(2):601-6. PubMed ID: 21763150
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activity-based protein profiling of infected plants.
    Kaschani F; Gu C; van der Hoorn RA
    Methods Mol Biol; 2012; 835():47-59. PubMed ID: 22183646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfur-Containing Agrochemicals.
    Devendar P; Yang GF
    Top Curr Chem (Cham); 2017 Oct; 375(6):82. PubMed ID: 28993992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemoproteomic, biochemical and pharmacological approaches in the discovery of inhibitors targeting human α/β-hydrolase domain containing 11 (ABHD11).
    Navia-Paldanius D; Patel JZ; López Navarro M; Jakupović H; Goffart S; Pasonen-Seppänen S; Nevalainen TJ; Jääskeläinen T; Laitinen T; Laitinen JT; Savinainen JR
    Eur J Pharm Sci; 2016 Oct; 93():253-63. PubMed ID: 27544863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alkyne derivatives of isocoumarins as clickable activity-based probes for serine proteases.
    Haedke U; Götz M; Baer P; Verhelst SH
    Bioorg Med Chem; 2012 Jan; 20(2):633-40. PubMed ID: 21454080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 4-Hydroxyphenylpyruvate Dioxygenase Inhibitors: From Chemical Biology to Agrochemicals.
    Ndikuryayo F; Moosavi B; Yang WC; Yang GF
    J Agric Food Chem; 2017 Oct; 65(39):8523-8537. PubMed ID: 28903556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diversity of serine hydrolase activities of unchallenged and botrytis-infected Arabidopsis thaliana.
    Kaschani F; Gu C; Niessen S; Hoover H; Cravatt BF; van der Hoorn RA
    Mol Cell Proteomics; 2009 May; 8(5):1082-93. PubMed ID: 19136719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of a carboxylesterase in herbicide bioactivation in Arabidopsis thaliana.
    Gershater MC; Cummins I; Edwards R
    J Biol Chem; 2007 Jul; 282(29):21460-6. PubMed ID: 17519238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propesticides and their use as agrochemicals.
    Jeschke P
    Pest Manag Sci; 2016 Feb; 72(2):210-25. PubMed ID: 26449612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals?
    Tice CM
    Pest Manag Sci; 2001 Jan; 57(1):3-16. PubMed ID: 11455629
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Alkyne chemistry in crop protection.
    Lamberth C
    Bioorg Med Chem; 2009 Jun; 17(12):4047-63. PubMed ID: 19059785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ahp cyclodepsipeptides: the impact of the Ahp residue on the "canonical inhibition" of S1 serine proteases.
    Stolze SC; Meltzer M; Ehrmann M; Kaiser M
    Chembiochem; 2013 Jul; 14(11):1301-8. PubMed ID: 23794257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementation of intramolecular interactions for structural-functional stability of plant serine proteinase inhibitors.
    Joshi RS; Mishra M; Suresh CG; Gupta VS; Giri AP
    Biochim Biophys Acta; 2013 Nov; 1830(11):5087-94. PubMed ID: 23891708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiplex Fluorescent, Activity-Based Protein Profiling Identifies Active α-Glycosidases and Other Hydrolases in Plants.
    Husaini AM; Morimoto K; Chandrasekar B; Kelly S; Kaschani F; Palmero D; Jiang J; Kaiser M; Ahrazem O; Overkleeft HS; van der Hoorn RAL
    Plant Physiol; 2018 May; 177(1):24-37. PubMed ID: 29555787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome-wide reactivity profiling identifies diverse carbamate chemotypes tuned for serine hydrolase inhibition.
    Chang JW; Cognetta AB; Niphakis MJ; Cravatt BF
    ACS Chem Biol; 2013 Jul; 8(7):1590-9. PubMed ID: 23701408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Competitive activity-based protein profiling identifies aza-β-lactams as a versatile chemotype for serine hydrolase inhibition.
    Zuhl AM; Mohr JT; Bachovchin DA; Niessen S; Hsu KL; Berlin JM; Dochnahl M; López-Alberca MP; Fu GC; Cravatt BF
    J Am Chem Soc; 2012 Mar; 134(11):5068-71. PubMed ID: 22400490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A general strategy to inhibit serine protease by targeting its autolysis loop.
    Jiang L; Yuan C; Huang M
    FASEB J; 2021 Feb; 35(2):e21259. PubMed ID: 33417271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic Characterization of Anticarsia gemmatalis Digestive Serine- Proteases and the Inhibitory Effect of Synthetic Peptides.
    Patarroyo-Vargas AM; Merino-Cabrera YB; Zanuncio JC; Rocha F; Campos WG; de Almeida Oliveira MG
    Protein Pept Lett; 2017; 24(11):1040-1047. PubMed ID: 28925864
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for Tuning the Selectivity of Chemical Probes that Target Serine Hydrolases.
    Faucher F; Bennett JM; Bogyo M; Lovell S
    Cell Chem Biol; 2020 Aug; 27(8):937-952. PubMed ID: 32726586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.