BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 21765373)

  • 1. Computational simulation of altitude change-induced intraocular pressure alteration in patients with intravitreal gas bubbles.
    Amini R; Barocas VH; Kavehpour HP; Hubschman JP
    Retina; 2011 Sep; 31(8):1656-63. PubMed ID: 21765373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patients With Intravitreal Gas Bubbles at Risk of High Intraocular Pressure Without Exceeding Elevation of Surgery: Theoretical Analysis.
    Gsellman L; Amini R
    Invest Ophthalmol Vis Sci; 2016 Jun; 57(7):3340-7. PubMed ID: 27367501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of changing intraocular pressure on the corneal and scleral curvatures in the fresh porcine eye.
    Pierscionek BK; Asejczyk-Widlicka M; Schachar RA
    Br J Ophthalmol; 2007 Jun; 91(6):801-3. PubMed ID: 17151057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on establishment and mechanics application of finite element model of bovine eye.
    Cui YH; Huang JF; Cheng SY; Wei W; Shang L; Li N; Xiong K
    BMC Ophthalmol; 2015 Aug; 15():101. PubMed ID: 26268321
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expansion of intraocular gas bubbles due to altitude: do meteorological factors play a role?
    Ferrini W; Pournaras JA; Wolfensberger TJ
    Klin Monbl Augenheilkd; 2010 Apr; 227(4):312-4. PubMed ID: 20408083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of intravitreal injections and volume changes on intraocular pressure: clinical results and biomechanical model.
    Kotliar K; Maier M; Bauer S; Feucht N; Lohmann C; Lanzl I
    Acta Ophthalmol Scand; 2007 Nov; 85(7):777-81. PubMed ID: 17573861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intraocular pressure measured at ground level and 10,000 feet.
    Bayer A; Yumuşak E; Sahin OF; Uysal Y
    Aviat Space Environ Med; 2004 Jun; 75(6):543-5. PubMed ID: 15198282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocular hypotensive mechanism of intravitreally injected brain natriuretic peptide in rabbit.
    Takashima Y; Taniguchi T; Yoshida M; Haque MS; Yoshimura N; Honda Y
    Invest Ophthalmol Vis Sci; 1996 Dec; 37(13):2671-7. PubMed ID: 8977481
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of intraocular pressure rise in patients with gas-filled eyes during simulated air flight.
    Mills MD; Devenyi RG; Lam WC; Berger AR; Beijer CD; Lam SR
    Ophthalmology; 2001 Jan; 108(1):40-4. PubMed ID: 11150262
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluid and structure coupling analysis of the interaction between aqueous humor and iris.
    Wang W; Qian X; Song H; Zhang M; Liu Z
    Biomed Eng Online; 2016 Dec; 15(Suppl 2):133. PubMed ID: 28155692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Al3+ and Be2+ ions combined with NaF on ciliary process adenylyl cyclase activity and aqueous humor dynamics in the rabbit eye.
    Mittag TW; Tormay A; Severin C; Taniguchi T; Lee PY; Wang RF; Podos SM
    Invest Ophthalmol Vis Sci; 1993 Mar; 34(3):606-12. PubMed ID: 8449679
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Material properties of the cornea and sclera: a modelling approach to test experimental analysis.
    Asejczyk-Widlicka M; Śródka W; Schachar RA; Pierścionek BK
    J Biomech; 2011 Feb; 44(3):543-6. PubMed ID: 20980007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of intraocular pressure on the absorption of air from the vitreous cavity.
    Enyedi LB; Loewenstein A; de Juan E
    Graefes Arch Clin Exp Ophthalmol; 1998 Apr; 236(4):301-4. PubMed ID: 9561365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Assessment of the Risk of Ocular Hypotony in Patients With Intravitreal Gas Bubbles Who Travel Through Subsea Tunnels.
    Rashidi N; Thomas VS; Amini R
    Transl Vis Sci Technol; 2019 Jan; 8(1):4. PubMed ID: 30627479
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of intravitreal and topical prostaglandins on intraocular inflammation.
    Kulkarni PS; Srinivasan BD
    Invest Ophthalmol Vis Sci; 1982 Sep; 23(3):383-92. PubMed ID: 7050005
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aqueous humor outflow facility by tonography does not change with body position.
    Selvadurai D; Hodge D; Sit AJ
    Invest Ophthalmol Vis Sci; 2010 Mar; 51(3):1453-7. PubMed ID: 19959645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraocular pressure and acclimatization to 4300 M altitude.
    Cymerman A; Rock PB; Muza SR; Lyons TP; Fulco CS; Mazzeo RS; Butterfield G; Moore LG
    Aviat Space Environ Med; 2000 Oct; 71(10):1045-50. PubMed ID: 11051312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous humor dynamics during the day and night in juvenile and adult rabbits.
    Zhao M; Hejkal JJ; Camras CB; Toris CB
    Invest Ophthalmol Vis Sci; 2010 Jun; 51(6):3145-51. PubMed ID: 20107172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility.
    Honjo M; Tanihara H; Inatani M; Kido N; Sawamura T; Yue BY; Narumiya S; Honda Y
    Invest Ophthalmol Vis Sci; 2001 Jan; 42(1):137-44. PubMed ID: 11133858
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of intracameral and intravitreal injection of calcitonin gene-related peptide on the intraocular pressure and outflow facility of aqueous humor in the rabbit.
    Oksala O; Heino P; Uusitalo H; Palkama A
    Exp Eye Res; 1998 Oct; 67(4):411-5. PubMed ID: 9820788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.