These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 21765583)

  • 1. On two-dimensional fractional Brownian motion and fractional Brownian random field.
    Qian H; Raymond GM; Bassingthwaighte JB
    J Phys A Math Gen; 1998; 31(28):L527. PubMed ID: 21765583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fractional Brownian motion with random Hurst exponent: Accelerating diffusion and persistence transitions.
    Balcerek M; Burnecki K; Thapa S; Wyłomańska A; Chechkin A
    Chaos; 2022 Sep; 32(9):093114. PubMed ID: 36182362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extreme-value statistics of fractional Brownian motion bridges.
    Delorme M; Wiese KJ
    Phys Rev E; 2016 Nov; 94(5-1):052105. PubMed ID: 27967044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Variational inference of fractional Brownian motion with linear computational complexity.
    Verdier H; Laurent F; Cassé A; Vestergaard CL; Masson JB
    Phys Rev E; 2022 Nov; 106(5-2):055311. PubMed ID: 36559393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Fractional Brownian Dynamics Method for Simulating the Dynamics of Confined Bottle-Brush Polymers in Viscoelastic Solution.
    Yu S; Chu R; Wu G; Meng X
    Polymers (Basel); 2024 Feb; 16(4):. PubMed ID: 38399901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.
    Meerschaert MM; Sabzikar F
    Stoch Process Their Appl; 2014 Jul; 124(7):2363-2387. PubMed ID: 24872598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anomalous fluctuations of currents in Sinai-type random chains with strongly correlated disorder.
    Oshanin G; Rosso A; Schehr G
    Phys Rev Lett; 2013 Mar; 110(10):100602. PubMed ID: 23521244
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Testing of Multifractional Brownian Motion.
    Balcerek M; Burnecki K
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33322676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion.
    Cushman JH; O'Malley D; Park M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fractional diffusion equation for an n-dimensional correlated Lévy walk.
    Taylor-King JP; Klages R; Fedotov S; Van Gorder RA
    Phys Rev E; 2016 Jul; 94(1-1):012104. PubMed ID: 27575074
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of the time between maximum and minimum of random walks.
    Mori F; Majumdar SN; Schehr G
    Phys Rev E; 2020 May; 101(5-1):052111. PubMed ID: 32575204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional brownian motion: a maximum likelihood estimator and its application to image texture.
    Lundahl T; Ohley WJ; Kay SM; Siffert R
    IEEE Trans Med Imaging; 1986; 5(3):152-61. PubMed ID: 18244001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical analysis of superstatistical fractional Brownian motion and applications.
    Maćkała A; Magdziarz M
    Phys Rev E; 2019 Jan; 99(1-1):012143. PubMed ID: 30780232
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fractional Brownian motion and motion governed by the fractional Langevin equation in confined geometries.
    Jeon JH; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 1):021103. PubMed ID: 20365526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting the distribution of serotonergic axons: a supercomputing simulation of reflected fractional Brownian motion in a 3D-mouse brain model.
    Janušonis S; Haiman JH; Metzler R; Vojta T
    Front Comput Neurosci; 2023; 17():1189853. PubMed ID: 37265780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perturbative expansion for the maximum of fractional Brownian motion.
    Delorme M; Wiese KJ
    Phys Rev E; 2016 Jul; 94(1-1):012134. PubMed ID: 27575103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fractional and scaled Brownian motion on the sphere: The effects of long-time correlations on navigation strategies.
    Valdés Gómez A; Sevilla FJ
    Phys Rev E; 2023 Nov; 108(5-1):054117. PubMed ID: 38115432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Motion of a random walker in a quenched power law correlated velocity field.
    Roy S; Das D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026106. PubMed ID: 16605397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of locally self-similar processes using multifractional Brownian motion of Riemann-Liouville type.
    Muniandy SV; Lim SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Apr; 63(4 Pt 2):046104. PubMed ID: 11308909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous versus slowed-down Brownian diffusion in the ligand-binding equilibrium.
    Soula H; Caré B; Beslon G; Berry H
    Biophys J; 2013 Nov; 105(9):2064-73. PubMed ID: 24209851
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.