These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 2176601)

  • 21. Phosphorylation and glycosylation of bovine lens MP20.
    Ervin LA; Ball LE; Crouch RK; Schey KL
    Invest Ophthalmol Vis Sci; 2005 Feb; 46(2):627-35. PubMed ID: 15671292
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sites of in vivo phosphorylation of vesicular stomatitis virus matrix protein.
    Kaptur PE; McCreedy BJ; Lyles DS
    J Virol; 1992 Sep; 66(9):5384-92. PubMed ID: 1323702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Purification and complete sequence determination of the major plasma membrane substrate for cAMP-dependent protein kinase and protein kinase C in myocardium.
    Palmer CJ; Scott BT; Jones LR
    J Biol Chem; 1991 Jun; 266(17):11126-30. PubMed ID: 1710217
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Posttranslational modifications in lens fiber connexins identified by off-line-HPLC MALDI-quadrupole time-of-flight mass spectrometry.
    Shearer D; Ens W; Standing K; Valdimarsson G
    Invest Ophthalmol Vis Sci; 2008 Apr; 49(4):1553-62. PubMed ID: 18385075
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Partial amino acid sequence of the major intrinsic protein (MIP) of the chicken lens deduced from the nucleotide sequence of a cDNA clone.
    Kodama R; Agata K; Mochii M; Eguchi G
    Exp Eye Res; 1990 Jun; 50(6):737-41. PubMed ID: 2373168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. cAMP-dependent phosphorylation of betaig-h3 protein in human corneal endothelial cells.
    Srivastava OP; Srivastava K
    Curr Eye Res; 1999 Oct; 19(4):348-57. PubMed ID: 10520231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterization of serine and threonine phosphorylation sites in beta-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching.
    Jaffe H; Veeranna ; Pant HC
    Biochemistry; 1998 Nov; 37(46):16211-24. PubMed ID: 9819213
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heterologous expression and topography of the main intrinsic protein (MIP) from rat lens.
    Drake KD; Schuette D; Chepelinsky AB; Crabbe MJ
    FEBS Lett; 2002 Feb; 512(1-3):191-8. PubMed ID: 11852078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Post-translational modifications of aquaporin 0 (AQP0) in the normal human lens: spatial and temporal occurrence.
    Ball LE; Garland DL; Crouch RK; Schey KL
    Biochemistry; 2004 Aug; 43(30):9856-65. PubMed ID: 15274640
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence analysis of peptide fragments from the intrinsic membrane protein of calf lens fibers MP26 and its natural maturation product MP22.
    Do Ngoc L; Paroutaud P; Dunia I; Benedetti EL; Hoebeke J
    FEBS Lett; 1985 Feb; 181(1):74-8. PubMed ID: 3882455
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmental changes in membrane protein expression by chick lens cells in vivo and in vitro and the detection of main intrinsic polypeptide (MIP).
    Patek CE; Vornhagen R; Rink H; Clayton RM
    Exp Eye Res; 1986 Jul; 43(1):29-40. PubMed ID: 3089828
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interaction of major intrinsic protein (aquaporin-0) with fiber connexins in lens development.
    Yu XS; Jiang JX
    J Cell Sci; 2004 Feb; 117(Pt 6):871-80. PubMed ID: 14762116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Water channel properties of major intrinsic protein of lens.
    Mulders SM; Preston GM; Deen PM; Guggino WB; van Os CH; Agre P
    J Biol Chem; 1995 Apr; 270(15):9010-16. PubMed ID: 7536742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Properties of chicken lens MIP channels reconstituted into planar lipid bilayers.
    Modesto E; Lampe PD; Ribeiro MC; Spray DC; Campos de Carvalho AC
    J Membr Biol; 1996 Dec; 154(3):239-49. PubMed ID: 8952953
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Glycation decreases calmodulin binding to lens transmembrane protein, MIP.
    Swamy-Mruthinti S
    Biochim Biophys Acta; 2001 Apr; 1536(1):64-72. PubMed ID: 11335105
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mass spectroscopic identification of in vitro glycated sites of MIP.
    Swamy-Mruthinti S; Schey KL
    Curr Eye Res; 1997 Sep; 16(9):936-41. PubMed ID: 9288456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ca(2+)-calmodulin-dependent phosphorylation of arginine in histone 3 by a nuclear kinase from mouse leukemia cells.
    Wakim BT; Aswad GD
    J Biol Chem; 1994 Jan; 269(4):2722-7. PubMed ID: 8300603
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The major intrinsic protein (MIP) of the bovine lens fiber membrane: characterization and structure based on cDNA cloning.
    Gorin MB; Yancey SB; Cline J; Revel JP; Horwitz J
    Cell; 1984 Nov; 39(1):49-59. PubMed ID: 6207938
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Subunits of purified calcium channels: a 212-kDa form of alpha 1 and partial amino acid sequence of a phosphorylation site of an independent beta subunit.
    De Jongh KS; Merrick DK; Catterall WA
    Proc Natl Acad Sci U S A; 1989 Nov; 86(21):8585-9. PubMed ID: 2554320
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ hybridisation localises the gene for the major intrinsic protein of eye lens fibre cell membranes to human chromosome 12q14.
    Griffin CS; Shiels A
    Cytogenet Cell Genet; 1992; 61(1):8-9. PubMed ID: 1505237
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.