These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 21766044)

  • 1. Spatial and temporal dynamics in the ionic driving force for GABA(A) receptors.
    Wright R; Raimondo JV; Akerman CJ
    Neural Plast; 2011; 2011():728395. PubMed ID: 21766044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of chloride channels to changes in intracellular calcium: investigations on spontaneous and GABA-evoked activity.
    Taleb O; Feltz P; Bossu JL; Feltz A
    Epilepsy Res Suppl; 1992; 8():47-56. PubMed ID: 1329828
    [No Abstract]   [Full Text] [Related]  

  • 3. Cl⁻ homeodynamics in gap junction-coupled astrocytic networks on activation of GABAergic synapses.
    Egawa K; Yamada J; Furukawa T; Yanagawa Y; Fukuda A
    J Physiol; 2013 Aug; 591(16):3901-17. PubMed ID: 23732644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protracted postnatal development of inhibitory synaptic transmission in rat hippocampal area CA1 neurons.
    Cohen AS; Lin DD; Coulter DA
    J Neurophysiol; 2000 Nov; 84(5):2465-76. PubMed ID: 11067989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibitory transmission, activity-dependent ionic changes and neuronal network oscillations.
    Jedlicka P; Backus KH
    Physiol Res; 2006; 55(2):139-149. PubMed ID: 15910171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activity-dependent intracellular chloride accumulation and diffusion controls GABA(A) receptor-mediated synaptic transmission.
    Jedlicka P; Deller T; Gutkin BS; Backus KH
    Hippocampus; 2011 Aug; 21(8):885-98. PubMed ID: 20575006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-dependent development of inhibitory synapses and innervation pattern: role of GABA signalling and beyond.
    Huang ZJ
    J Physiol; 2009 May; 587(Pt 9):1881-8. PubMed ID: 19188247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cell biology of synaptic inhibition in health and disease.
    Smith KR; Kittler JT
    Curr Opin Neurobiol; 2010 Oct; 20(5):550-6. PubMed ID: 20650630
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Refining the roles of GABAergic signaling during neural circuit formation.
    Akerman CJ; Cline HT
    Trends Neurosci; 2007 Aug; 30(8):382-9. PubMed ID: 17590449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of excitability by extrasynaptic GABA(A) receptors.
    Walker MC; Semyanov A
    Results Probl Cell Differ; 2008; 44():29-48. PubMed ID: 17671772
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABA(C) rho(1) subunits form functional receptors but not functional synapses in hippocampal neurons.
    Cheng Q; Burkat PM; Kulli JC; Yang J
    J Neurophysiol; 2001 Nov; 86(5):2605-15. PubMed ID: 11698546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal changes in somatic gamma-aminobutyric acid signalling in the rat hippocampus.
    Tyzio R; Minlebaev M; Rheims S; Ivanov A; Jorquera I; Holmes GL; Zilberter Y; Ben-Ari Y; Khazipov R
    Eur J Neurosci; 2008 May; 27(10):2515-28. PubMed ID: 18547241
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GABA is a modulator, rather than a classical transmitter, in the medial nucleus of the trapezoid body-lateral superior olive sound localization circuit.
    Fischer AU; Müller NIC; Deller T; Del Turco D; Fisch JO; Griesemer D; Kattler K; Maraslioglu A; Roemer V; Xu-Friedman MA; Walter J; Friauf E
    J Physiol; 2019 Apr; 597(8):2269-2295. PubMed ID: 30776090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors.
    Farrant M; Nusser Z
    Nat Rev Neurosci; 2005 Mar; 6(3):215-29. PubMed ID: 15738957
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GABAergic control of substantia nigra dopaminergic neurons.
    Tepper JM; Lee CR
    Prog Brain Res; 2007; 160():189-208. PubMed ID: 17499115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bridging the cleft at GABA synapses in the brain.
    Mody I; De Koninck Y; Otis TS; Soltesz I
    Trends Neurosci; 1994 Dec; 17(12):517-25. PubMed ID: 7532336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The involvement of GABAB receptors and coupled G-proteins in spinal GABAergic presynaptic inhibition.
    Alford S; Grillner S
    J Neurosci; 1991 Dec; 11(12):3718-26. PubMed ID: 1660534
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The balance between excitation and inhibition in dentate granule cells and its role in epilepsy.
    Mody I; Otis TS; Staley KJ; Köhr G
    Epilepsy Res Suppl; 1992; 9():331-9. PubMed ID: 1337447
    [No Abstract]   [Full Text] [Related]  

  • 19. Neuronal diversity in the subiculum: correlations with the effects of somatostatin on intrinsic properties and on GABA-mediated IPSPs in vitro.
    Greene JR; Mason A
    J Neurophysiol; 1996 Sep; 76(3):1657-66. PubMed ID: 8890283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. alpha5 Subunit-containing GABA(A) receptors form clusters at GABAergic synapses in hippocampal cultures.
    Christie SB; de Blas AL
    Neuroreport; 2002 Dec; 13(17):2355-8. PubMed ID: 12488826
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.