BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 21766101)

  • 1. Fast carbon nanotube detectors for micro gas chromatographs.
    Salehi-Khojin A; Lin KY; Field CR; Masel RI
    Nanoscale; 2011 Aug; 3(8):3097-102. PubMed ID: 21766101
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal-modified and vertically aligned carbon nanotube sensors array for landfill gas monitoring applications.
    Penza M; Rossi R; Alvisi M; Serra E
    Nanotechnology; 2010 Mar; 21(10):105501. PubMed ID: 20154374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel solid-phase microextraction using coated fiber based sol-gel technique using poly(ethylene glycol) grafted multi-walled carbon nanotubes for determination of benzene, toluene, ethylbenzene and o-xylene in water samples with gas chromatography-flame ionization detector.
    Sarafraz-Yazdi A; Amiri A; Rounaghi G; Hosseini HE
    J Chromatogr A; 2011 Aug; 1218(34):5757-64. PubMed ID: 21782185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A carbon nanotube sponge as an adsorbent for vapor preconcentration of aromatic volatile organic compounds.
    Bang J; You DW; Jang Y; Oh JS; Jung KW
    J Chromatogr A; 2019 Nov; 1605():460363. PubMed ID: 31320133
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of GC detectors performance and validation.
    Pandya GH
    Indian J Environ Health; 2003 Apr; 45(2):139-42. PubMed ID: 15270346
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.
    Singh R; Pantarotto D; McCarthy D; Chaloin O; Hoebeke J; Partidos CD; Briand JP; Prato M; Bianco A; Kostarelos K
    J Am Chem Soc; 2005 Mar; 127(12):4388-96. PubMed ID: 15783221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotube field-effect transistor detector associated to gas chromatography for speciation of benzene, toluene, ethylbenzene, (o-, m- and p-)xylene.
    Silva LI; Ferreira FD; Rocha-Santos TA; Duarte AC
    J Chromatogr A; 2009 Sep; 1216(37):6517-21. PubMed ID: 19665718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-Chip Monolithic Integrated Multimode Carbon Nanotube Sensor for a Gas Chromatography Detector.
    Sun X; Hu J; Yan X; Li T; Chang Y; Qu H; Pang W; Duan X
    ACS Sens; 2022 Oct; 7(10):3049-3056. PubMed ID: 36227068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid-liquid extraction/headspace/gas chromatographic/mass spectrometric determination of benzene, toluene, ethylbenzene, (o-, m- and p-)xylene and styrene in olive oil using surfactant-coated carbon nanotubes as extractant.
    Carrillo-Carrión C; Lucena R; Cárdenas S; Valcárcel M
    J Chromatogr A; 2007 Nov; 1171(1-2):1-7. PubMed ID: 17919647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex gas chromatography: an alternative concept for gas chromatographic analysis of planetary atmospheres.
    Valentin JR
    LC GC; 1989 Mar; 7(3):248-57. PubMed ID: 11539794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Separation of alkanes and aromatic compounds by packed column gas chromatography using functionalized multi-walled carbon nanotubes as stationary phases.
    Speltini A; Merli D; Quartarone E; Profumo A
    J Chromatogr A; 2010 Apr; 1217(17):2918-24. PubMed ID: 20303087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the sensing mechanism in carbon nanotube chemiresistors.
    Salehi-Khojin A; Khalili-Araghi F; Kuroda MA; Lin KY; Leburton JP; Masel RI
    ACS Nano; 2011 Jan; 5(1):153-8. PubMed ID: 21186822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microtrapping characteristics of single and multi-walled carbon nanotubes.
    Hussain CM; Saridara C; Mitra S
    J Chromatogr A; 2008 Mar; 1185(2):161-6. PubMed ID: 18282580
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents.
    Wang F; Gu H; Swager TM
    J Am Chem Soc; 2008 Apr; 130(16):5392-3. PubMed ID: 18373343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-nanotube-alginate composite modified electrode fabricated by in situ gelation for capillary electrophoresis.
    Wei B; Wang J; Chen Z; Chen G
    Chemistry; 2008; 14(31):9779-85. PubMed ID: 18773408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoresonant signal boosters for carbon nanotube based infrared detectors.
    Fung CK; Xi N; Shanker B; Lai KW
    Nanotechnology; 2009 May; 20(18):185201. PubMed ID: 19420605
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magnetic entrapment for fast, simple and reversible electrode modification with carbon nanotubes: application to dopamine detection.
    Baldrich E; Gómez R; Gabriel G; Muñoz FX
    Biosens Bioelectron; 2011 Jan; 26(5):1876-82. PubMed ID: 20378329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly sensitive carbon nanotube-embedding gas sensors operating at atmospheric pressure.
    Yun JH; Kim J; Park YC; Song JW; Shin DH; Han CS
    Nanotechnology; 2009 Feb; 20(5):055503. PubMed ID: 19417347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of dopamine sensing by layer-by-layer assembly of PVI-dmeOs and Nafion on carbon nanotubes.
    Cui HF; Cui YH; Sun YL; Zhang K; Zhang WD
    Nanotechnology; 2010 May; 21(21):215601. PubMed ID: 20431203
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potentiometric online detection of aromatic hydrocarbons in aqueous phase using carbon nanotube-based sensors.
    Washe AP; Macho S; Crespo GA; Rius FX
    Anal Chem; 2010 Oct; 82(19):8106-12. PubMed ID: 20809625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.