These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 21766362)

  • 1. Influence of the preparation procedure on the catalytic activity of gold supported on diamond nanoparticles for phenol peroxidation.
    Martin R; Navalon S; Delgado JJ; Calvino JJ; Alvaro M; Garcia H
    Chemistry; 2011 Aug; 17(34):9494-502. PubMed ID: 21766362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sunlight-assisted Fenton reaction catalyzed by gold supported on diamond nanoparticles as pretreatment for biological degradation of aqueous phenol solutions.
    Navalon S; Martin R; Alvaro M; Garcia H
    ChemSusChem; 2011 May; 4(5):650-7. PubMed ID: 21433302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the catalytic activity of supported gold nanoparticles for the Fenton reaction by light.
    Navalon S; de Miguel M; Martin R; Alvaro M; Garcia H
    J Am Chem Soc; 2011 Feb; 133(7):2218-26. PubMed ID: 21280633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of hydrogen annealing on the photocatalytic activity of diamond-supported gold catalysts.
    Navalon S; Sempere D; Alvaro M; Garcia H
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7160-9. PubMed ID: 23815432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new insight into Fenton and Fenton-like processes for water treatment.
    Jiang C; Pang S; Ouyang F; Ma J; Jiang J
    J Hazard Mater; 2010 Feb; 174(1-3):813-7. PubMed ID: 19853996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nano-jewels in biology. Gold and platinum on diamond nanoparticles as antioxidant systems against cellular oxidative stress.
    Martín R; Menchón C; Apostolova N; Victor VM; Alvaro M; Herance JR; García H
    ACS Nano; 2010 Nov; 4(11):6957-65. PubMed ID: 20939514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenol degradation in water through a heterogeneous photo-Fenton process catalyzed by Fe-treated laponite.
    Iurascu B; Siminiceanu I; Vione D; Vicente MA; Gil A
    Water Res; 2009 Mar; 43(5):1313-22. PubMed ID: 19138784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spin trapping of Au-H intermediate in the alcohol oxidation by supported and unsupported gold catalysts.
    Conte M; Miyamura H; Kobayashi S; Chechik V
    J Am Chem Soc; 2009 May; 131(20):7189-96. PubMed ID: 19405535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electro-catalytic degradation of phenol on several metal-oxide anodes.
    Wang YQ; Gu B; Xu WL
    J Hazard Mater; 2009 Mar; 162(2-3):1159-64. PubMed ID: 18684560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fe (III) supported on resin as effective catalyst for the heterogeneous oxidation of phenol in aqueous solution.
    Liou RM; Chen SH; Hung MY; Hsu CS; Lai JY
    Chemosphere; 2005 Mar; 59(1):117-25. PubMed ID: 15698652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semicontinuous Fenton oxidation of phenol in aqueous solution. A kinetic study.
    Zazo JA; Casas JA; Mohedano AF; Rodriguez JJ
    Water Res; 2009 Sep; 43(16):4063-9. PubMed ID: 19616818
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Partial oxidation of propylene to propylene oxide over a neutral gold trimer in the gas phase: a density functional theory study.
    Joshi AM; Delgass WN; Thomson KT
    J Phys Chem B; 2006 Feb; 110(6):2572-81. PubMed ID: 16471857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrotalcite-supported gold catalyst for the oxidant-free dehydrogenation of benzyl alcohol: studies on support and gold size effects.
    Fang W; Chen J; Zhang Q; Deng W; Wang Y
    Chemistry; 2011 Jan; 17(4):1247-56. PubMed ID: 21243691
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic activity of CuOn-La2O3/gamma-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater.
    Bi X; Wang P; Jiang H
    J Hazard Mater; 2008 Jun; 154(1-3):543-9. PubMed ID: 18061342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactions of copper(II)-phenol systems with O2: models for TPQ biosynthesis in copper amine oxidases.
    Tabuchi K; Ertem MZ; Sugimoto H; Kunishita A; Tano T; Fujieda N; Cramer CJ; Itoh S
    Inorg Chem; 2011 Mar; 50(5):1633-47. PubMed ID: 21284380
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of highly active silica-supported Au catalysts for CO oxidation by a solution-based technique.
    Zhu H; Liang C; Yan W; Overbury SH; Dai S
    J Phys Chem B; 2006 Jun; 110(22):10842-8. PubMed ID: 16771335
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyl radical initiated oxidation of s-triazine: hydrogen abstraction is faster than hydroxyl addition.
    da Silva G; Bozzelli JW; Asatryan R
    J Phys Chem A; 2009 Jul; 113(30):8596-606. PubMed ID: 19572687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromate-induced activation of hydrogen peroxide for oxidative degradation of aqueous organic pollutants.
    Bokare AD; Choi W
    Environ Sci Technol; 2010 Oct; 44(19):7232-7. PubMed ID: 20408538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.
    Wang AQ; Chang CM; Mou CY
    J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity of hydrogen peroxide decomposition towards hydroxyl radicals in catalytic wet peroxide oxidation (CWPO) over Fe/AC catalysts.
    Rey A; Bahamonde A; Casas JA; Rodríguez JJ
    Water Sci Technol; 2010; 61(11):2769-78. PubMed ID: 20489249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.