These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 21766825)

  • 1. Facile synthesis of highly photoactive α-Fe₂O₃-based films for water oxidation.
    Wang G; Ling Y; Wheeler DA; George KE; Horsley K; Heske C; Zhang JZ; Li Y
    Nano Lett; 2011 Aug; 11(8):3503-9. PubMed ID: 21766825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sn-doped hematite nanostructures for photoelectrochemical water splitting.
    Ling Y; Wang G; Wheeler DA; Zhang JZ; Li Y
    Nano Lett; 2011 May; 11(5):2119-25. PubMed ID: 21476581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive ballistic deposition of alpha-Fe2O3 thin films for photoelectrochemical water oxidation.
    Hahn NT; Ye H; Flaherty DW; Bard AJ; Mullins CB
    ACS Nano; 2010 Apr; 4(4):1977-86. PubMed ID: 20361756
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mesoporous α-Fe2O3 thin films synthesized via the sol-gel process for light-driven water oxidation.
    Hamd W; Cobo S; Fize J; Baldinozzi G; Schwartz W; Reymermier M; Pereira A; Fontecave M; Artero V; Laberty-Robert C; Sanchez C
    Phys Chem Chem Phys; 2012 Oct; 14(38):13224-32. PubMed ID: 22911106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ordered Ti-doped FeVO
    Zeng Q; Fu X; Chang S; Zhang Q; Xiong Z; Liu Y; Peng G; Li M
    J Colloid Interface Sci; 2021 Dec; 604():562-567. PubMed ID: 34274717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-temperature activation of hematite nanowires for photoelectrochemical water oxidation.
    Ling Y; Wang G; Wang H; Yang Y; Li Y
    ChemSusChem; 2014 Mar; 7(3):848-53. PubMed ID: 24493003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation.
    Katsuki T; Zahran ZN; Tanaka K; Eo T; Mohamed EA; Tsubonouchi Y; Berber MR; Yagi M
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39282-39290. PubMed ID: 34387481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic and photoelectrochemical water oxidation over metal-doped monoclinic BiVO(4) photoanodes.
    Parmar KP; Kang HJ; Bist A; Dua P; Jang JS; Lee JS
    ChemSusChem; 2012 Oct; 5(10):1926-34. PubMed ID: 22927058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Micro-nano-structured Fe₂O₃:Ti/ZnFe₂O₄ heterojunction films for water oxidation.
    Miao C; Ji S; Xu G; Liu G; Zhang L; Ye C
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):4428-33. PubMed ID: 22803694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinatorial investigation of the effects of the incorporation of Ti, Si, and Al on the performance of α-Fe2O3 photoanodes.
    He J; Parkinson BA
    ACS Comb Sci; 2011 Jul; 13(4):399-404. PubMed ID: 21627308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes.
    Jorand Sartoretti C; Alexander BD; Solarska R; Rutkowska IA; Augustynski J; Cerny R
    J Phys Chem B; 2005 Jul; 109(28):13685-92. PubMed ID: 16852715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photoelectrochemical Behavior of Electrophoretically Deposited Hematite Thin Films Modified with Ti(IV).
    Dalle Carbonare N; Boaretto R; Caramori S; Argazzi R; Dal Colle M; Pasquini L; Bertoncello R; Marelli M; Evangelisti C; Bignozzi CA
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27447604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Ti-Pt Co-doped α-Fe
    Zhong Z; Zhan G; Du B; Lu X; Qin Z; Xiao J
    J Colloid Interface Sci; 2023 Jul; 641():91-104. PubMed ID: 36924549
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Ti Doping on Hematite Photoanodes: More Surface States.
    Niu Y; Zhou Y; Niu P; Shen H; Ma Y
    J Nanosci Nanotechnol; 2019 Jun; 19(6):3437-3446. PubMed ID: 30744771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physical and photoelectrochemical properties of Zr-doped hematite nanorod arrays.
    Shen S; Guo P; Wheeler DA; Jiang J; Lindley SA; Kronawitter CX; Zhang JZ; Guo L; Mao SS
    Nanoscale; 2013 Oct; 5(20):9867-74. PubMed ID: 23974247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergies of co-doping in ultra-thin hematite photoanodes for solar water oxidation: In and Ti as representative case.
    Singh AP; Tossi C; Tittonen I; Hellman A; Wickman B
    RSC Adv; 2020 Sep; 10(55):33307-33316. PubMed ID: 35515023
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photocurrent enhancement for Ti-doped Fe₂O₃ thin film photoanodes by an in situ solid-state reaction method.
    Miao C; Shi T; Xu G; Ji S; Ye C
    ACS Appl Mater Interfaces; 2013 Feb; 5(4):1310-6. PubMed ID: 23347501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient and stable photo-oxidation of water by a bismuth vanadate photoanode coupled with an iron oxyhydroxide oxygen evolution catalyst.
    Seabold JA; Choi KS
    J Am Chem Soc; 2012 Feb; 134(4):2186-92. PubMed ID: 22263661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solution growth of Ta-doped hematite nanorods for efficient photoelectrochemical water splitting: a tradeoff between electronic structure and nanostructure evolution.
    Fu Y; Dong CL; Zhou Z; Lee WY; Chen J; Guo P; Zhao L; Shen S
    Phys Chem Chem Phys; 2016 Feb; 18(5):3846-53. PubMed ID: 26763113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.
    Steier L; Luo J; Schreier M; Mayer MT; Sajavaara T; Grätzel M
    ACS Nano; 2015 Dec; 9(12):11775-83. PubMed ID: 26516784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.