These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 21766923)
21. Protein-ligand binding affinity predictions by implicit solvent simulations: a tool for lead optimization? Michel J; Verdonk ML; Essex JW J Med Chem; 2006 Dec; 49(25):7427-39. PubMed ID: 17149872 [TBL] [Abstract][Full Text] [Related]
22. Glycogen phosphorylase inhibitors: a free energy perturbation analysis of glucopyranose spirohydantoin analogues. Archontis G; Watson KA; Xie Q; Andreou G; Chrysina ED; Zographos SE; Oikonomakos NG; Karplus M Proteins; 2005 Dec; 61(4):984-98. PubMed ID: 16245298 [TBL] [Abstract][Full Text] [Related]
23. Multiple free energies from a single simulation: extending enveloping distribution sampling to nonoverlapping phase-space distributions. Christ CD; van Gunsteren WF J Chem Phys; 2008 May; 128(17):174112. PubMed ID: 18465915 [TBL] [Abstract][Full Text] [Related]
24. Free energy calculations of protein-ligand interactions. de Ruiter A; Oostenbrink C Curr Opin Chem Biol; 2011 Aug; 15(4):547-52. PubMed ID: 21684797 [TBL] [Abstract][Full Text] [Related]
25. Computation of binding free energy with molecular dynamics and grand canonical Monte Carlo simulations. Deng Y; Roux B J Chem Phys; 2008 Mar; 128(11):115103. PubMed ID: 18361618 [TBL] [Abstract][Full Text] [Related]
26. Enveloping distribution sampling: a method to calculate free energy differences from a single simulation. Christ CD; van Gunsteren WF J Chem Phys; 2007 May; 126(18):184110. PubMed ID: 17508795 [TBL] [Abstract][Full Text] [Related]
27. Computation of the binding affinities of catechol-O-methyltransferase inhibitors: multisubstate relative free energy calculations. Palma PN; Bonifácio MJ; Loureiro AI; Soares-da-Silva P J Comput Chem; 2012 Apr; 33(9):970-86. PubMed ID: 22278964 [TBL] [Abstract][Full Text] [Related]
28. Exhaustive mutagenesis in silico: multicoordinate free energy calculations on proteins and peptides. Pitera JW; Kollman PA Proteins; 2000 Nov; 41(3):385-97. PubMed ID: 11025549 [TBL] [Abstract][Full Text] [Related]
29. Using enveloping distribution sampling to compute the free enthalpy difference between right- and left-handed helices of a β-peptide in solution. Lin Z; Timmerscheidt TA; van Gunsteren WF J Chem Phys; 2012 Aug; 137(6):064108. PubMed ID: 22897256 [TBL] [Abstract][Full Text] [Related]
30. Free energies of binding of polychlorinated biphenyls to the estrogen receptor from a single simulation. Oostenbrink C; van Gunsteren WF Proteins; 2004 Feb; 54(2):237-46. PubMed ID: 14696186 [TBL] [Abstract][Full Text] [Related]
31. Binding free energies and free energy components from molecular dynamics and Poisson-Boltzmann calculations. Application to amino acid recognition by aspartyl-tRNA synthetase. Archontis G; Simonson T; Karplus M J Mol Biol; 2001 Feb; 306(2):307-27. PubMed ID: 11237602 [TBL] [Abstract][Full Text] [Related]
32. What determines the van der Waals coefficient beta in the LIE (linear interaction energy) method to estimate binding free energies using molecular dynamics simulations? Wang W; Wang J; Kollman PA Proteins; 1999 Feb; 34(3):395-402. PubMed ID: 10024025 [TBL] [Abstract][Full Text] [Related]
33. Accurate ensemble molecular dynamics binding free energy ranking of multidrug-resistant HIV-1 proteases. Sadiq SK; Wright DW; Kenway OA; Coveney PV J Chem Inf Model; 2010 May; 50(5):890-905. PubMed ID: 20384328 [TBL] [Abstract][Full Text] [Related]
34. Synthesis, biochemical evaluation, and classical and three-dimensional quantitative structure-activity relationship studies of 7-substituted-1,2,3,4-tetrahydroisoquinolines and their relative affinities toward phenylethanolamine N-methyltransferase and the alpha2-adrenoceptor. Grunewald GL; Dahanukar VH; Jalluri RK; Criscione KR J Med Chem; 1999 Jan; 42(1):118-34. PubMed ID: 9888838 [TBL] [Abstract][Full Text] [Related]
35. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials. Ge X; Roux B J Mol Recognit; 2010; 23(2):128-41. PubMed ID: 20151411 [TBL] [Abstract][Full Text] [Related]
36. Computational methods for the study of enzymic reaction mechanisms III: a perturbation plus QM/MM approach for calculating relative free energies of protonation. Cummins PL; Gready JE J Comput Chem; 2005 Apr; 26(6):561-8. PubMed ID: 15726569 [TBL] [Abstract][Full Text] [Related]
37. Fast and accurate predictions of binding free energies using MM-PBSA and MM-GBSA. Rastelli G; Del Rio A; Degliesposti G; Sgobba M J Comput Chem; 2010 Mar; 31(4):797-810. PubMed ID: 19569205 [TBL] [Abstract][Full Text] [Related]
38. Computational study of the mechanism and the relative free energies of binding of anticholesteremic inhibitors to squalene-hopene cyclase. Schwab F; van Gunsteren WF; Zagrovic B Biochemistry; 2008 Mar; 47(9):2945-51. PubMed ID: 18247576 [TBL] [Abstract][Full Text] [Related]
39. Comparative evaluation of MMPBSA and XSCORE to compute binding free energy in XIAP-peptide complexes. Obiol-Pardo C; Rubio-Martinez J J Chem Inf Model; 2007; 47(1):134-42. PubMed ID: 17238258 [TBL] [Abstract][Full Text] [Related]
40. Biophysical and physicochemical methods differentiate highly ligand-efficient human D-amino acid oxidase inhibitors. Lange JH; Venhorst J; van Dongen MJ; Frankena J; Bassissi F; de Bruin NM; den Besten C; de Beer SB; Oostenbrink C; Markova N; Kruse CG Eur J Med Chem; 2011 Oct; 46(10):4808-19. PubMed ID: 21880399 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]