These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 21767200)
1. The accuracy of absorbed dose estimates in tumours determined by quantitative SPECT: a Monte Carlo study. Ljungberg M; Sjögreen-Gleisner K Acta Oncol; 2011 Aug; 50(6):981-9. PubMed ID: 21767200 [TBL] [Abstract][Full Text] [Related]
2. Fast voxel-level dosimetry for (177)Lu labelled peptide treatments. Hippeläinen E; Tenhunen M; Sohlberg A Phys Med Biol; 2015 Sep; 60(17):6685-700. PubMed ID: 26270032 [TBL] [Abstract][Full Text] [Related]
3. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction. Elschot M; Smits ML; Nijsen JF; Lam MG; Zonnenberg BA; van den Bosch MA; Viergever MA; de Jong HW Med Phys; 2013 Nov; 40(11):112502. PubMed ID: 24320461 [TBL] [Abstract][Full Text] [Related]
4. Quantitative Monte Carlo-based 90Y SPECT reconstruction. Elschot M; Lam MG; van den Bosch MA; Viergever MA; de Jong HW J Nucl Med; 2013 Sep; 54(9):1557-63. PubMed ID: 23907758 [TBL] [Abstract][Full Text] [Related]
5. 3D absorbed dose calculations based on SPECT: evaluation for 111-In/90-Y therapy using Monte Carlo simulations. Ljungberg M; Frey E; Sjögreen K; Liu X; Dewaraja Y; Strand SE Cancer Biother Radiopharm; 2003 Feb; 18(1):99-107. PubMed ID: 12667313 [TBL] [Abstract][Full Text] [Related]
6. Linear Boltzmann equation solver for voxel-level dosimetry in radiopharmaceutical therapy: Comparison with Monte Carlo and kernel convolution. Kayal G; Van B; Andl G; Tu C; Wareing T; Wilderman S; Mikell J; Dewaraja YK Med Phys; 2024 Aug; 51(8):5604-5617. PubMed ID: 38436493 [TBL] [Abstract][Full Text] [Related]
7. Accurate dosimetry in 131I radionuclide therapy using patient-specific, 3-dimensional methods for SPECT reconstruction and absorbed dose calculation. Dewaraja YK; Wilderman SJ; Ljungberg M; Koral KF; Zasadny K; Kaminiski MS J Nucl Med; 2005 May; 46(5):840-9. PubMed ID: 15872359 [TBL] [Abstract][Full Text] [Related]
8. Evaluating the Application of Tissue-Specific Dose Kernels Instead of Water Dose Kernels in Internal Dosimetry: A Monte Carlo Study. Khazaee Moghadam M; Kamali Asl A; Geramifar P; Zaidi H Cancer Biother Radiopharm; 2016 Dec; 31(10):367-379. PubMed ID: 27996311 [TBL] [Abstract][Full Text] [Related]
9. A 3-dimensional absorbed dose calculation method based on quantitative SPECT for radionuclide therapy: evaluation for (131)I using monte carlo simulation. Ljungberg M; Sjögreen K; Liu X; Frey E; Dewaraja Y; Strand SE J Nucl Med; 2002 Aug; 43(8):1101-9. PubMed ID: 12163637 [TBL] [Abstract][Full Text] [Related]
10. Development and evaluation of an improved quantitative (90)Y bremsstrahlung SPECT method. Rong X; Du Y; Ljungberg M; Rault E; Vandenberghe S; Frey EC Med Phys; 2012 May; 39(5):2346-58. PubMed ID: 22559605 [TBL] [Abstract][Full Text] [Related]
11. Impact of missing attenuation and scatter corrections on Botta F; Ferrari M; Chiesa C; Vitali S; Guerriero F; Nile MC; Mira M; Lorenzon L; Pacilio M; Cremonesi M Med Phys; 2018 Apr; 45(4):1684-1698. PubMed ID: 29383733 [TBL] [Abstract][Full Text] [Related]
12. Fast Monte Carlo based joint iterative reconstruction for simultaneous 99mTc/ 123I SPECT imaging. Ouyang J; El Fakhri G; Moore SC Med Phys; 2007 Aug; 34(8):3263-72. PubMed ID: 17879789 [TBL] [Abstract][Full Text] [Related]
13. Monte Carlo calculations of absorbed doses in tumours using a modified MOBY mouse phantom for pre-clinical dosimetry studies. Larsson E; Ljungberg M; Strand SE; Jönsson BA Acta Oncol; 2011 Aug; 50(6):973-80. PubMed ID: 21767199 [TBL] [Abstract][Full Text] [Related]
14. Improved quantitative Dewaraja YK; Chun SY; Srinivasa RN; Kaza RK; Cuneo KC; Majdalany BS; Novelli PM; Ljungberg M; Fessler JA Med Phys; 2017 Dec; 44(12):6364-6376. PubMed ID: 28940483 [TBL] [Abstract][Full Text] [Related]
15. 3D calculation of absorbed dose for 131I-targeted radiotherapy: a Monte Carlo study. Saeedzadeh E; Sarkar S; Abbaspour Tehrani-Fard A; Ay MR; Khosravi HR; Loudos G Radiat Prot Dosimetry; 2012 Jul; 150(3):298-305. PubMed ID: 22069233 [TBL] [Abstract][Full Text] [Related]
16. Impact of SPECT corrections on 3D-dosimetry for liver transarterial radioembolization using the patient relative calibration methodology. Pacilio M; Ferrari M; Chiesa C; Lorenzon L; Mira M; Botta F; Becci D; Torres LA; Coca Perez M; Vergara Gil A; Basile C; Ljungberg M; Pani R; Cremonesi M Med Phys; 2016 Jul; 43(7):4053. PubMed ID: 27370124 [TBL] [Abstract][Full Text] [Related]
17. DblurDoseNet: A deep residual learning network for voxel radionuclide dosimetry compensating for single-photon emission computerized tomography imaging resolution. Li Z; Fessler JA; Mikell JK; Wilderman SJ; Dewaraja YK Med Phys; 2022 Feb; 49(2):1216-1230. PubMed ID: 34882821 [TBL] [Abstract][Full Text] [Related]
18. Magnetic resonance imaging-based radiation-absorbed dose estimation of 166Ho microspheres in liver radioembolization. Seevinck PR; van de Maat GH; de Wit TC; Vente MA; Nijsen JF; Bakker CJ Int J Radiat Oncol Biol Phys; 2012 Jul; 83(3):e437-44. PubMed ID: 22633554 [TBL] [Abstract][Full Text] [Related]
19. Personalized dosimetry of Carter LM; Ocampo Ramos JC; Kesner AL Biomed Phys Eng Express; 2021 Aug; 7(5):. PubMed ID: 34271565 [No Abstract] [Full Text] [Related]
20. Characterizing the voxel-based approaches in radioembolization dosimetry with reDoseMC. Kim TP; Enger SA Med Phys; 2024 Jun; 51(6):4007-4027. PubMed ID: 38703394 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]