These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 21767566)
21. Inhibition pathways of the potent organophosphate CBDP with cholinesterases revealed by X-ray crystallographic snapshots and mass spectrometry. Carletti E; Colletier JP; Schopfer LM; Santoni G; Masson P; Lockridge O; Nachon F; Weik M Chem Res Toxicol; 2013 Feb; 26(2):280-9. PubMed ID: 23339663 [TBL] [Abstract][Full Text] [Related]
22. Assessment of neurotoxic effects of tri-cresyl phosphates (TCPs) and cresyl saligenin phosphate (CBDP) using a combination of in vitro techniques. Hausherr V; Schöbel N; Liebing J; van Thriel C Neurotoxicology; 2017 Mar; 59():210-221. PubMed ID: 27288108 [TBL] [Abstract][Full Text] [Related]
23. Simultaneous Time-concentration Analysis of Soman and VX Adducts to Butyrylcholinesterase and Albumin by LC-MS-MS. Lee JY; Kim C; Lee YH J Anal Toxicol; 2018 Jun; 42(5):293-299. PubMed ID: 29618078 [TBL] [Abstract][Full Text] [Related]
24. Mass spectrometry based proteomic approach for the screening of butyrylcholinesterase adduct formation with organophosphates. Dubrovskii Y; Murashko E; Chuprina O; Beltyukov P; Radilov A; Solovyev N; Babakov V Talanta; 2019 May; 197():374-382. PubMed ID: 30771950 [TBL] [Abstract][Full Text] [Related]
25. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of titanium oxide-enriched peptides for detection of aged organophosphorus adducts on human butyrylcholinesterase. Jiang W; Murashko EA; Dubrovskii YA; Podolskaya EP; Babakov VN; Mikler J; Nachon F; Masson P; Schopfer LM; Lockridge O Anal Biochem; 2013 Aug; 439(2):132-41. PubMed ID: 23624322 [TBL] [Abstract][Full Text] [Related]
27. Inhibition of plasma butyrylcholinesterase activity in the lizard Gallotia galloti palmae by pesticides: a field study. Sánchez-Hernández JC; Carbonell R; Henríquez Pérez A; Montealegre M; Gómez L Environ Pollut; 2004 Dec; 132(3):479-88. PubMed ID: 15325464 [TBL] [Abstract][Full Text] [Related]
28. Magnetic Fe3O4@TiO2 nanoparticles-based test strip immunosensing device for rapid detection of phosphorylated butyrylcholinesterase. Ge X; Zhang W; Lin Y; Du D Biosens Bioelectron; 2013 Dec; 50():486-91. PubMed ID: 23911770 [TBL] [Abstract][Full Text] [Related]
29. Nontargeted High-Resolution Mass Spectrometric Workflow for the Detection of Butyrylcholinesterase-Derived Adducts with Organophosphorus Toxicants and Structural Characterization of Their Phosphyl Moiety after In-Source Fragmentation. John H; Dentzel M; Siegert M; Thiermann H Anal Chem; 2022 Feb; 94(4):2048-2055. PubMed ID: 35041786 [TBL] [Abstract][Full Text] [Related]
30. Comparison of Efficiency of Purification (from Human Plasma) of a Nerve Agent Adduct of Butyrylcholinesterase Between the Affinity Gel Method and Immunomagnetic Separation. Lee JY J Chromatogr Sci; 2018 Mar; 56(3):248-253. PubMed ID: 29244127 [TBL] [Abstract][Full Text] [Related]
31. High-Confidence Qualitative Identification of Organophosphorus Nerve Agent Adducts to Human Butyrylcholinesterase. Mathews TP; Carter MD; Johnson D; Isenberg SL; Graham LA; Thomas JD; Johnson RC Anal Chem; 2017 Feb; 89(3):1955-1964. PubMed ID: 28208252 [TBL] [Abstract][Full Text] [Related]
32. Enzyme-linked immunosorbent assay for detection of organophosphorylated butyrylcholinesterase: a biomarker of exposure to organophosphate agents. Wang L; Du D; Lu D; Lin CT; Smith JN; Timchalk C; Liu F; Wang J; Lin Y Anal Chim Acta; 2011 May; 693(1-2):1-6. PubMed ID: 21504805 [TBL] [Abstract][Full Text] [Related]
33. Fast affinity purification coupled with mass spectrometry for identifying organophosphate labeled plasma butyrylcholinesterase. Li H; Tong L; Schopfer LM; Masson P; Lockridge O Chem Biol Interact; 2008 Sep; 175(1-3):68-72. PubMed ID: 18586231 [TBL] [Abstract][Full Text] [Related]
34. Mass spectrometric analyses of organophosphate insecticide oxon protein adducts. Thompson CM; Prins JM; George KM Environ Health Perspect; 2010 Jan; 118(1):11-9. PubMed ID: 20056576 [TBL] [Abstract][Full Text] [Related]
35. Identification of phosphorylated butyrylcholinesterase in human plasma using immunoaffinity purification and mass spectrometry. Aryal UK; Lin CT; Kim JS; Heibeck TH; Wang J; Qian WJ; Lin Y Anal Chim Acta; 2012 Apr; 723():68-75. PubMed ID: 22444575 [TBL] [Abstract][Full Text] [Related]
36. Characterization of human cytochrome P450s involved in the bioactivation of tri-ortho-cresyl phosphate (ToCP). Reinen J; Nematollahi L; Fidder A; Vermeulen NP; Noort D; Commandeur JN Chem Res Toxicol; 2015 Apr; 28(4):711-21. PubMed ID: 25706813 [TBL] [Abstract][Full Text] [Related]
37. Comparison of neurotoxic effects and potential risks from oral administration or ingestion of tricresyl phosphate and jet engine oil containing tricresyl phosphate. Mackerer CR; Barth ML; Krueger AJ; Chawla B; Roy TA J Toxicol Environ Health A; 1999 Jul; 57(5):293-328. PubMed ID: 10405186 [TBL] [Abstract][Full Text] [Related]
38. Magnetic electrochemical sensing platform for biomonitoring of exposure to organophosphorus pesticides and nerve agents based on simultaneous measurement of total enzyme amount and enzyme activity. Du D; Wang J; Wang L; Lu D; Smith JN; Timchalk C; Lin Y Anal Chem; 2011 May; 83(10):3770-7. PubMed ID: 21462919 [TBL] [Abstract][Full Text] [Related]
39. Preparation, characterization of Fe3O4 at TiO2 magnetic nanoparticles and their application for immunoassay of biomarker of exposure to organophosphorus pesticides. Zhang X; Wang H; Yang C; Du D; Lin Y Biosens Bioelectron; 2013 Mar; 41():669-74. PubMed ID: 23122753 [TBL] [Abstract][Full Text] [Related]
40. Detection of human butyrylcholinesterase-nerve gas adducts by liquid chromatography-mass spectrometric analysis after in gel chymotryptic digestion. Tsuge K; Seto Y J Chromatogr B Analyt Technol Biomed Life Sci; 2006 Jun; 838(1):21-30. PubMed ID: 16569519 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]