BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 21767612)

  • 1. Spike frequency adaptation is developmentally regulated in substantia nigra pars compacta dopaminergic neurons.
    Vandecasteele M; Deniau JM; Venance L
    Neuroscience; 2011 Sep; 192():1-10. PubMed ID: 21767612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological properties of zebra finch ventral tegmental area and substantia nigra pars compacta neurons.
    Gale SD; Perkel DJ
    J Neurophysiol; 2006 Nov; 96(5):2295-306. PubMed ID: 16870835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SK- and h-current contribute to the generation of theta-like resonance of rat substantia nigra pars compacta dopaminergic neurons at hyperpolarized membrane potentials.
    Xue WN; Wang Y; He SM; Wang XL; Zhu JL; Gao GD
    Brain Struct Funct; 2012 Apr; 217(2):379-94. PubMed ID: 22108680
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential Regulation of Action Potential Shape and Burst-Frequency Firing by BK and Kv2 Channels in Substantia Nigra Dopaminergic Neurons.
    Kimm T; Khaliq ZM; Bean BP
    J Neurosci; 2015 Dec; 35(50):16404-17. PubMed ID: 26674866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: involvement of transient receptor potential channels.
    Guatteo E; Chung KK; Bowala TK; Bernardi G; Mercuri NB; Lipski J
    J Neurophysiol; 2005 Nov; 94(5):3069-80. PubMed ID: 16014800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophysiological characterization of substantia nigra dopaminergic neurons in partially lesioned rats: effects of subthalamotomy and levodopa treatment.
    Bilbao G; Ruiz-Ortega JA; Miguens N; Ulibarri I; Linazasoro G; Gómez-Urquijo S; Garibi J; Ugedo L
    Brain Res; 2006 Apr; 1084(1):175-84. PubMed ID: 16574080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of firing activity by ATP in dopamine neurons of the rat substantia nigra pars compacta.
    Choi YM; Jang JY; Jang M; Kim SH; Kang YK; Cho H; Chung S; Park MK
    Neuroscience; 2009 May; 160(3):587-95. PubMed ID: 19272429
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Ca2+-independent slow afterhyperpolarization in substantia nigra compacta neurons.
    Nedergaard S
    Neuroscience; 2004; 125(4):841-52. PubMed ID: 15120845
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two pathways for the activation of small-conductance potassium channels in neurons of substantia nigra pars reticulata.
    Yanovsky Y; Zhang W; Misgeld U
    Neuroscience; 2005; 136(4):1027-36. PubMed ID: 16203104
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Electrophysiological characteristics of neurons in rat substantia nigra by visual patch clamp technique].
    Kong Y; Xu Z; Dong WL; Cao BY; Liu CF
    Zhonghua Yi Xue Za Zhi; 2009 Aug; 89(29):2081-4. PubMed ID: 20017336
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of dopaminergic neuron firing by heterogeneous dopamine autoreceptors in the substantia nigra pars compacta.
    Jang JY; Jang M; Kim SH; Um KB; Kang YK; Kim HJ; Chung S; Park MK
    J Neurochem; 2011 Mar; 116(6):966-74. PubMed ID: 21073466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca2+ release-dependent hyperpolarizations modulate the firing pattern of juvenile GABA neurons in mouse substantia nigra pars reticulata in vitro.
    Yanovsky Y; Velte S; Misgeld U
    J Physiol; 2006 Dec; 577(Pt 3):879-90. PubMed ID: 17053035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of (-)-epigallocatechin-3-gallate on the activity of substantia nigra dopaminergic neurons.
    Jeong HS; Jang S; Jang MJ; Lee SG; Kim TS; Tag-Heo ; Lee JH; Jun JY; Park JS
    Brain Res; 2007 Jan; 1130(1):114-8. PubMed ID: 17174286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Connexin mRNA expression in single dopaminergic neurons of substantia nigra pars compacta.
    Vandecasteele M; Glowinski J; Venance L
    Neurosci Res; 2006 Dec; 56(4):419-26. PubMed ID: 17014920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological characteristics of substantia nigra neurons in organotypic cultures: spontaneous and evoked activities.
    Rohrbacher J; Ichinohe N; Kitai ST
    Neuroscience; 2000; 97(4):703-14. PubMed ID: 10842015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Possible roles of kainate receptors on GABAergic nerve terminals projecting to rat substantia nigra dopaminergic neurons.
    Nakamura M; Jang IS; Ishibashi H; Watanabe S; Akaike N
    J Neurophysiol; 2003 Sep; 90(3):1662-70. PubMed ID: 12789017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SK Ca2+-activated K+ channel ligands alter the firing pattern of dopamine-containing neurons in vivo.
    Ji H; Shepard PD
    Neuroscience; 2006 Jun; 140(2):623-33. PubMed ID: 16564639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sex- and cell-type-specific patterns of GABAA receptor and estradiol-mediated signaling in the immature rat substantia nigra.
    Galanopoulou AS
    Eur J Neurosci; 2006 May; 23(9):2423-30. PubMed ID: 16706849
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual function of Zn2+ on the intrinsic excitability of dopaminergic neurons in rat substantia nigra.
    Noh J; Chang SY; Wang SY; Chung JM
    Neuroscience; 2011 Feb; 175():85-92. PubMed ID: 21081151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A small-conductance Ca2+-dependent K+ current regulates dopamine neuron activity: a combined approach of dynamic current clamping and intracellular imaging of calcium signals.
    Tateno T
    Neuroreport; 2010 Jul; 21(10):667-74. PubMed ID: 20508546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.