BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 21767673)

  • 1. Linking protein oxidation to environmental pollutants: redox proteomic approaches.
    Braconi D; Bernardini G; Santucci A
    J Proteomics; 2011 Oct; 74(11):2324-37. PubMed ID: 21767673
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental pollutants and lifestyle factors induce oxidative stress and poor prenatal development.
    Al-Gubory KH
    Reprod Biomed Online; 2014 Jul; 29(1):17-31. PubMed ID: 24813750
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants.
    Valavanidis A; Vlahogianni T; Dassenakis M; Scoullos M
    Ecotoxicol Environ Saf; 2006 Jun; 64(2):178-89. PubMed ID: 16406578
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox and global interconnected proteome changes in mice exposed to complex environmental hazards surrounding Doñana National Park.
    Michán C; Chicano-Gálvez E; Fuentes-Almagro CA; Alhama J
    Environ Pollut; 2019 Sep; 252(Pt A):427-439. PubMed ID: 31158671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A; Ramos E; Villanueva J; Hernansanz-Agustín P; Fernández-Rodríguez R; Tello D; Carrascal M; Martínez-Ruiz A
    J Proteomics; 2012 Sep; 75(17):5449-62. PubMed ID: 22800641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox proteomics in the mussel, Mytilus edulis.
    McDonagh B; Tyther R; Sheehan D
    Mar Environ Res; 2006 Jul; 62 Suppl():S101-4. PubMed ID: 16684561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The London low emission zone baseline study.
    Kelly F; Armstrong B; Atkinson R; Anderson HR; Barratt B; Beevers S; Cook D; Green D; Derwent D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Nov; (163):3-79. PubMed ID: 22315924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biomarker responses in terrestrial gastropods exposed to pollutants: A comprehensive review.
    Radwan MA; El-Gendy KS; Gad AF
    Chemosphere; 2020 Oct; 257():127218. PubMed ID: 32497833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Redox proteomics as biomarker for assessing the biological effects of contaminants in crayfish from Doñana National Park.
    Fernández-Cisnal R; Alhama J; Abril N; Pueyo C; López-Barea J
    Sci Total Environ; 2014 Aug; 490():121-33. PubMed ID: 24846406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Redox proteomics: basic principles and future perspectives for the detection of protein oxidation in plants.
    Rinalducci S; Murgiano L; Zolla L
    J Exp Bot; 2008; 59(14):3781-801. PubMed ID: 18977746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Environmental toxicity, oxidative stress and apoptosis: ménage à trois.
    Franco R; Sánchez-Olea R; Reyes-Reyes EM; Panayiotidis MI
    Mutat Res; 2009 Mar; 674(1-2):3-22. PubMed ID: 19114126
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SILAC-based quantitative proteomics identified lysosome as a fast response target to PDT agent Gd-N induced oxidative stress in human ovarian cancer IGROV1 cells.
    Qi D; Wang Q; Li H; Zhang T; Lan R; Kwong DW; Wong WK; Wong KL; Li S; Lu F
    Mol Biosyst; 2015 Nov; 11(11):3059-67. PubMed ID: 26331702
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A redox proteomic investigation of oxidative stress caused by benzoylecgonine in the freshwater bivalve Dreissena polymorpha.
    Pedriali A; Riva C; Parolini M; Cristoni S; Sheehan D; Binelli A
    Drug Test Anal; 2013 Aug; 5(8):646-56. PubMed ID: 22991338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toxins and stress in fish: proteomic analyses and response network.
    Karim M; Puiseux-Dao S; Edery M
    Toxicon; 2011 Jun; 57(7-8):959-69. PubMed ID: 21457724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gel-free proteomic methodologies to study reversible cysteine oxidation and irreversible protein carbonyl formation.
    Boronat S; García-Santamarina S; Hidalgo E
    Free Radic Res; 2015 May; 49(5):494-510. PubMed ID: 25782062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thiol-based redox proteomics in cancer research.
    Yuan K; Liu Y; Chen HN; Zhang L; Lan J; Gao W; Dou Q; Nice EC; Huang C
    Proteomics; 2015 Jan; 15(2-3):287-99. PubMed ID: 25251260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathophysiology of tobacco smoke exposure: recent insights from comparative and redox proteomics.
    Colombo G; Clerici M; Giustarini D; Portinaro NM; Aldini G; Rossi R; Milzani A; Dalle-Donne I
    Mass Spectrom Rev; 2014; 33(3):183-218. PubMed ID: 24272816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic responses to metal-induced oxidative stress in hydrothermal vent-living mussels, Bathymodiolus sp., on the Southwest Indian Ridge.
    Cole C; Coelho AV; James RH; Connelly D; Sheehan D
    Mar Environ Res; 2014 May; 96():29-37. PubMed ID: 24080408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomics methods to study methionine oxidation.
    Ghesquière B; Gevaert K
    Mass Spectrom Rev; 2014; 33(2):147-56. PubMed ID: 24178673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A redox proteomics approach to investigate the mode of action of nanomaterials.
    Riebeling C; Wiemann M; Schnekenburger J; Kuhlbusch TA; Wohlleben W; Luch A; Haase A
    Toxicol Appl Pharmacol; 2016 May; 299():24-9. PubMed ID: 26827820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.