These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
183 related articles for article (PubMed ID: 21767900)
21. Emerging challenges for the agro-industrial food waste utilization: A review on food waste biorefinery. Kumar V; Sharma N; Umesh M; Selvaraj M; Al-Shehri BM; Chakraborty P; Duhan L; Sharma S; Pasrija R; Awasthi MK; Lakkaboyana SR; Andler R; Bhatnagar A; Maitra SS Bioresour Technol; 2022 Oct; 362():127790. PubMed ID: 35973569 [TBL] [Abstract][Full Text] [Related]
22. Use of Brazilian sugarcane bagasse ash in concrete as sand replacement. Sales A; Lima SA Waste Manag; 2010 Jun; 30(6):1114-22. PubMed ID: 20163947 [TBL] [Abstract][Full Text] [Related]
23. Recycling MSWI bottom and fly ash as raw materials for Portland cement. Pan JR; Huang C; Kuo JJ; Lin SH Waste Manag; 2008; 28(7):1113-8. PubMed ID: 17627805 [TBL] [Abstract][Full Text] [Related]
24. Laboratory compaction of fly ash and fly ash with cement additions. Zabielska-Adamska K J Hazard Mater; 2008 Mar; 151(2-3):481-9. PubMed ID: 17619083 [TBL] [Abstract][Full Text] [Related]
25. Enzymatic hydrolysis of waste sugarcane bagasse in water media. Zheng C; Lei Y; Yu Q; Lui X; Huan K Environ Technol; 2002 Sep; 23(9):1009-16. PubMed ID: 12361374 [TBL] [Abstract][Full Text] [Related]
26. The status and developments of leather solid waste treatment: A mini-review. Jiang H; Liu J; Han W Waste Manag Res; 2016 May; 34(5):399-408. PubMed ID: 26944068 [TBL] [Abstract][Full Text] [Related]
27. Review of the rice production cycle: by-products and the main applications focusing on rice husk combustion and ash recycling. Moraes CA; Fernandes IJ; Calheiro D; Kieling AG; Brehm FA; Rigon MR; Berwanger Filho JA; Schneider IA; Osorio E Waste Manag Res; 2014 Nov; 32(11):1034-48. PubMed ID: 25361542 [TBL] [Abstract][Full Text] [Related]
28. Continuous CO(2) capture and MSWI fly ash stabilization, utilizing novel dynamic equipment. Jiang JG; Du XJ; Chen MZ; Zhang C Environ Pollut; 2009 Nov; 157(11):2933-8. PubMed ID: 19576668 [TBL] [Abstract][Full Text] [Related]
29. A review of mechanochemistry applications in waste management. Guo X; Xiang D; Duan G; Mou P Waste Manag; 2010 Jan; 30(1):4-10. PubMed ID: 19811900 [TBL] [Abstract][Full Text] [Related]
30. Fly ash as a soil ameliorant for improving crop production--a review. Jala S; Goyal D Bioresour Technol; 2006 Jun; 97(9):1136-47. PubMed ID: 16551534 [TBL] [Abstract][Full Text] [Related]
31. Biorefinery of waste orange peel. Angel Siles López J; Li Q; Thompson IP Crit Rev Biotechnol; 2010 Mar; 30(1):63-9. PubMed ID: 20148755 [TBL] [Abstract][Full Text] [Related]
32. Effect of an acidic and readily-biodegradable non-hazardous industrial process waste on refuse decomposition. Sadri A; Staley BF; Barlaz MA; Xu F; Hater GR Waste Manag; 2010 Mar; 30(3):389-95. PubMed ID: 19954958 [TBL] [Abstract][Full Text] [Related]
33. A methodology for optimising feed composition for anaerobic co-digestion of agro-industrial wastes. Alvarez JA; Otero L; Lema JM Bioresour Technol; 2010 Feb; 101(4):1153-8. PubMed ID: 19833510 [TBL] [Abstract][Full Text] [Related]
34. Utilization of MSWI fly ash for stabilization/solidification of industrial waste sludge. Qian G; Cao Y; Chui P; Tay J J Hazard Mater; 2006 Feb; 129(1-3):274-81. PubMed ID: 16242842 [TBL] [Abstract][Full Text] [Related]
35. Disposal of solid waste in Istanbul and along the Black Sea coast of Turkey. Berkun M; Aras E; Nemlioglu S Waste Manag; 2005; 25(8):847-55. PubMed ID: 15949934 [TBL] [Abstract][Full Text] [Related]
36. Thermal plasma technology for the treatment of wastes: a critical review. Gomez E; Rani DA; Cheeseman CR; Deegan D; Wise M; Boccaccini AR J Hazard Mater; 2009 Jan; 161(2-3):614-26. PubMed ID: 18499345 [TBL] [Abstract][Full Text] [Related]
37. Planning for integrated solid waste management at the industrial park level: a case of Tianjin, China. Geng Y; Zhu Q; Haight M Waste Manag; 2007; 27(1):141-50. PubMed ID: 17055715 [TBL] [Abstract][Full Text] [Related]
38. Characterization and potential valorization of industrial food processing wastes. Saba B; Bharathidasan AK; Ezeji TC; Cornish K Sci Total Environ; 2023 Apr; 868():161550. PubMed ID: 36652966 [TBL] [Abstract][Full Text] [Related]
39. Current developments and challenges of green technologies for the valorization of liquid, solid, and gaseous wastes from sugarcane ethanol production. Sydney EB; Carvalho JC; Letti LAJ; Magalhães AI; Karp SG; Martinez-Burgos WJ; Candeo ES; Rodrigues C; Vandenberghe LPS; Neto CJD; Torres LAZ; Medeiros ABP; Woiciechowski AL; Soccol CR J Hazard Mater; 2021 Feb; 404(Pt A):124059. PubMed ID: 33027733 [TBL] [Abstract][Full Text] [Related]
40. Vermicomposting of different types of waste using Eisenia foetida: a comparative study. Garg P; Gupta A; Satya S Bioresour Technol; 2006 Feb; 97(3):391-5. PubMed ID: 16168639 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]