These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 21768014)
1. Wideband energy harvesting for piezoelectric devices with linear resonant behavior. Luo C; Hofmann HF IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1294-301. PubMed ID: 21768014 [TBL] [Abstract][Full Text] [Related]
2. Acoustic energy harvesting using an electromechanical Helmholtz resonator. Liu F; Phipps A; Horowitz S; Ngo K; Cattafesta L; Nishida T; Sheplak M J Acoust Soc Am; 2008 Apr; 123(4):1983-90. PubMed ID: 18397006 [TBL] [Abstract][Full Text] [Related]
3. Piezoelectric diaphragm for vibration energy harvesting. Minazara E; Vasic D; Costa F; Poulin G Ultrasonics; 2006 Dec; 44 Suppl 1():e699-703. PubMed ID: 16814837 [TBL] [Abstract][Full Text] [Related]
4. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device. Petosić A; Svilar D; Ivancević B Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368 [TBL] [Abstract][Full Text] [Related]
5. Theoretical investigations of energy harvesting efficiency from structural vibrations using piezoelectric and electromagnetic oscillators. Harne RL J Acoust Soc Am; 2012 Jul; 132(1):162-72. PubMed ID: 22779465 [TBL] [Abstract][Full Text] [Related]
6. Design study of piezoelectric energy-harvesting devices for generation of higher electrical power using a coupled piezoelectric-circuit finite element method. Zhu M; Worthington E; Tiwari A IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):427-37. PubMed ID: 20178909 [TBL] [Abstract][Full Text] [Related]
7. Nonlinear optimization of acoustic energy harvesting using piezoelectric devices. Lallart M; Guyomar D; Richard C; Petit L J Acoust Soc Am; 2010 Nov; 128(5):2739-48. PubMed ID: 21110569 [TBL] [Abstract][Full Text] [Related]
8. Low-cost capacitor voltage inverter for outstanding performance in piezoelectric energy harvesting. Lallart M; Garbuio L; Richard C; Guyomar D IEEE Trans Ultrason Ferroelectr Freq Control; 2010; 57(2):281-91. PubMed ID: 20178894 [TBL] [Abstract][Full Text] [Related]
9. Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method. Zhu M; Worthington E; Njuguna J IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Jul; 56(7):1309-18. PubMed ID: 19574142 [TBL] [Abstract][Full Text] [Related]
10. Nonlinear interface between the piezoelectric harvesting structure and the modulating circuit of an energy harvester with a real storage battery. Hu Y; Xue H; Hu T; Hu H IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Jan; 55(1):148-60. PubMed ID: 18334321 [TBL] [Abstract][Full Text] [Related]
11. Dielectric and piezoelectric properties of CeO2-added nonstoichiometric (Na0.5K0.5)0.97(Nb0.96Sb0.04)O3 ceramics for piezoelectric energy harvesting device applications. Oh Y; Noh J; Yoo J; Kang J; Hwang L; Hong J IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Sep; 58(9):1860-6. PubMed ID: 21937318 [TBL] [Abstract][Full Text] [Related]
12. Double synchronized switch harvesting (DSSH): a new energy harvesting scheme for efficient energy extraction. Lallart M; Garbuio L; Petit L; Richard C; Guyomar D IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Oct; 55(10):2119-30. PubMed ID: 18986861 [TBL] [Abstract][Full Text] [Related]
13. Piezoelectric energy harvesting based on shear mode 0.71Pb(Mg(1/3)Nb(2/3))O3-0.29PbTiO3 single crystals. Ren B; Or SW; Wang F; Zhao X; Luo H; Li X; Zhang Q; Di W; Zhang Y IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1419-25. PubMed ID: 20529716 [TBL] [Abstract][Full Text] [Related]
14. Low-Frequency and Broadband Vibration Energy Harvesting Using Base-Mounted Piezoelectric Transducers. Koven R; Mills M; Gale R; Aksak B IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1735-1743. PubMed ID: 28816659 [TBL] [Abstract][Full Text] [Related]
15. A Self-Powered Hybrid SSHI Circuit with a Wide Operation Range for Piezoelectric Energy Harvesting. Wu L; Zhu P; Xie M Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477322 [TBL] [Abstract][Full Text] [Related]
16. Resonant Rectifier ICs for Piezoelectric Energy Harvesting Using Low-Voltage Drop Diode Equivalents. Din AU; Chandrathna SC; Lee JW Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28422085 [TBL] [Abstract][Full Text] [Related]
17. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers. Lin S; Xu J Sensors (Basel); 2017 Feb; 17(2):. PubMed ID: 28208583 [TBL] [Abstract][Full Text] [Related]
18. Electrostatic energy harvesting device with dual resonant structure for wideband random vibration sources at low frequency. Zhang Y; Wang T; Zhang A; Peng Z; Luo D; Chen R; Wang F Rev Sci Instrum; 2016 Dec; 87(12):125001. PubMed ID: 28040962 [TBL] [Abstract][Full Text] [Related]
19. Design and characterization of a high-power ultrasound driver with ultralow-output impedance. Lewis GK; Olbricht WL Rev Sci Instrum; 2009 Nov; 80(11):114704. PubMed ID: 19947748 [TBL] [Abstract][Full Text] [Related]
20. An Inductorless Self-Controlled Rectifier for Piezoelectric Energy Harvesting. Lu S; Boussaid F Sensors (Basel); 2015 Nov; 15(11):29192-208. PubMed ID: 26610492 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]