These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 21768015)

  • 21. Quartz crystal resonator g sensitivity measurement methods and recent results.
    Driscoll MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(5):386-92. PubMed ID: 18285055
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a 10 MHz oscillator working with an LGT crystal resonator: preliminary results.
    Imbaud J; Galliou S; Romand JP; Abbe P; Bourquin R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Sep; 55(9):1913-20. PubMed ID: 18986888
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A low phase noise microwave source for atomic spin squeezing experiments in 87Rb.
    Chen Z; Bohnet JG; Weiner JM; Thompson JK
    Rev Sci Instrum; 2012 Apr; 83(4):044701. PubMed ID: 22559559
    [TBL] [Abstract][Full Text] [Related]  

  • 24. HBAR-based 3.6 GHz oscillator with low power consumption and low phase noise.
    Yu H; Lee CY; Pang W; Zhang H; Brannon A; Kitching J; Kim ES
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Feb; 56(2):400-3. PubMed ID: 19251528
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Conversion of 1/f fluctuations in crystal resonator within an inter resonance gap.
    Shmaliy YS
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):61-71. PubMed ID: 18238399
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel microcomputer temperature-compensating method for an overtone crystal oscillator.
    Li M; Huang X; Tan F; Fan Y; Liang X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Nov; 52(11):1919-22. PubMed ID: 16422403
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Low Power Low Phase Noise Oscillator for MICS Transceivers.
    Li D; Liu D; Kang C; Zou X
    Sensors (Basel); 2017 Jan; 17(1):. PubMed ID: 28085107
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Wideband Oscillator Exploiting Multiple Resonances in Lithium Niobate MEMS Resonator.
    Kourani A; Lu R; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Sep; 67(9):1854-1866. PubMed ID: 32324549
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigations on LGS and LGT crystals to realize BAW resonators.
    Imbaud J; Boy JJ; Galliou S; Bourquin R; Romand JP
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008 Nov; 55(11):2384-91. PubMed ID: 19049918
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A digitally compensated 1.5 GHz CMOS/FBAR frequency reference.
    Rai S; Su Y; Pang W; Ruby R; Otis B
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Mar; 57(3):552-61. PubMed ID: 20211770
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 1.05-GHz CMOS oscillator based on lateral- field-excited piezoelectric AlN contour- mode MEMS resonators.
    Zuo C; Van der Spiegel J; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):82-7. PubMed ID: 20040430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New kind of injection-locked oscillator and its corresponding long-term stability control.
    Hong J; Liu A; Wang XH; Yao SX; Li ZL
    Appl Opt; 2015 Sep; 54(27):8187-91. PubMed ID: 26406523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Sub-mW 18-MHz MEMS Oscillator Based on a 98-dB
    Bouchami A; Elsayed MY; Nabki F
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31200575
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low phase-noise autonomous parametric oscillator based on a 226.7 MHz AlN contour-mode resonator.
    Cassella C; Piazza G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Apr; 62(4):617-24. PubMed ID: 25881340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Optical scattering noise in high Q fiber ring resonators and its effect on optoelectronic oscillator phase noise.
    Saleh K; Merrer PH; Llopis O; Cibiel G
    Opt Lett; 2012 Feb; 37(4):518-20. PubMed ID: 22344092
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling of a short-term stability measuring system of quartz crystal resonators.
    Sthal F; Mourey M
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):182-7. PubMed ID: 18238412
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An X-band, high power dielectric resonator oscillator for future military systems.
    Mizan MA; Sturzebecher D; Higgins T; Paolella A
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(5):483-7. PubMed ID: 18263210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phase-noise reduction in surface wave oscillators by using nonlinear sustaining amplifiers.
    Avramov ID
    IEEE Trans Ultrason Ferroelectr Freq Control; 2006 Apr; 53(4):707-15. PubMed ID: 16615574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A high-overtone bulk acoustic wave resonator-oscillator-based 4.596 GHz frequency source: Application to a coherent population trapping Cs vapor cell atomic clock.
    Daugey T; Friedt JM; Martin G; Boudot R
    Rev Sci Instrum; 2015 Nov; 86(11):114703. PubMed ID: 26628155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study on low-phase-noise optoelectronic oscillator and high-sensitivity phase noise measurement system.
    Hong J; Liu AM; Guo J
    J Opt Soc Am A Opt Image Sci Vis; 2013 Aug; 30(8):1557-62. PubMed ID: 24323214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.