These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 21768023)

  • 1. Numerical investigation of ultrasound refraction caused by oblique orientation of trabecular network in cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 Jul; 58(7):1389-96. PubMed ID: 21768023
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1320-8. PubMed ID: 20529708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a numerical cancellous bone model for finite-difference time-domain simulations of ultrasound propagation.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1219-33. PubMed ID: 18599410
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical analysis of variability in ultrasound propagation properties induced by trabecular microstructure in cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Apr; 56(4):738-47. PubMed ID: 19406702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasonic pulse waves in cancellous bone analyzed by finite-difference time-domain methods.
    Hosokawa A
    Ultrasonics; 2006 Dec; 44 Suppl 1():e227-31. PubMed ID: 16844171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical investigation of reflection properties of fast and slow longitudinal waves in cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2013 May; 60(5):1030-5. PubMed ID: 23661139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical Analysis of Ultrasound Backscattered Waves in Cancellous Bone Using a Finite-Difference Time-Domain Method: Isolation of the Backscattered Waves From Various Ranges of Bone Depths.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jun; 62(6):1201-10. PubMed ID: 26263571
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical simulation of wave propagation in cancellous bone.
    Padilla F; Bossy E; Haiat G; Jenson F; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e239-43. PubMed ID: 16859723
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical and experimental study on the wave attenuation in bone--FDTD simulation of ultrasound propagation in cancellous bone.
    Nagatani Y; Mizuno K; Saeki T; Matsukawa M; Sakaguchi T; Hosoi H
    Ultrasonics; 2008 Nov; 48(6-7):607-12. PubMed ID: 18589470
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary.
    Mizuno K; Nagatani Y; Yamashita K; Matsukawa M
    J Acoust Soc Am; 2011 Aug; 130(2):EL122-7. PubMed ID: 21877770
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-wave propagation imaging to evaluate the structure of cancellous bone.
    Yamashita K; Fujita F; Mizuno K; Mano I; Matsukawa M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Jun; 59(6):1160-6. PubMed ID: 22711411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variability in Ultrasound Backscatter Induced by Trabecular Microstructure Deterioration in Cancellous Bone.
    Chou X; Xu F; Li Y; Liu C; Ta D; Le LH
    Biomed Res Int; 2018; 2018():4786329. PubMed ID: 29780823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical investigation of ultrasonic attenuation through 2D trabecular bone structures reconstructed from CT scans and random realizations.
    Gilbert RP; Guyenne P; Li J
    Comput Biol Med; 2014 Feb; 45():143-56. PubMed ID: 24480174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast decomposition of two ultrasound longitudinal waves in cancellous bone using a phase rotation parameter for bone quality assessment: Simulation study.
    Taki H; Nagatani Y; Matsukawa M; Kanai H; Izumi SI
    J Acoust Soc Am; 2017 Oct; 142(4):2322. PubMed ID: 29092537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Numerical simulation of the dependence of quantitative ultrasonic parameters on trabecular bone microarchitecture and elastic constants.
    Haïat G; Padilla F; Barkmann R; Gluer CC; Laugier P
    Ultrasonics; 2006 Dec; 44 Suppl 1():e289-94. PubMed ID: 16859726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The correlation between the SOS in trabecular bone and stiffness and density studied by finite-element analysis.
    Goossens L; Vanderoost J; Jaecques S; Boonen S; D'hooge J; Lauriks W; Van der Perre G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2008; 55(6):1234-42. PubMed ID: 18599411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of ultrasound reflection and backscatter measurements in cancellous bone on various receiving areas.
    Hosokawa A
    Ultrasonics; 2014 Jul; 54(5):1237-44. PubMed ID: 24128942
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of ultrasound propagation through bovine cancellous bone using elastic and Biot's finite-difference time-domain methods.
    Hosokawa A
    J Acoust Soc Am; 2005 Sep; 118(3 Pt 1):1782-9. PubMed ID: 16240836
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional simulation of ultrasound propagation through trabecular bone structures measured by synchrotron microtomography.
    Bossy E; Padilla F; Peyrin F; Laugier P
    Phys Med Biol; 2005 Dec; 50(23):5545-56. PubMed ID: 16306651
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A μCT-based investigation of the influence of tissue modulus variation, anisotropy and inhomogeneity on ultrasound propagation in trabecular bone.
    Pan W; Shen Y; van Lenthe GH
    J Mech Behav Biomed Mater; 2016 Jul; 60():416-424. PubMed ID: 26974585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.