These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 21768042)

  • 1. Continuous locomotion-mode identification for prosthetic legs based on neuromuscular-mechanical fusion.
    Huang H; Zhang F; Hargrove LJ; Dou Z; Rogers DR; Englehart KB
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2867-75. PubMed ID: 21768042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time implementation of an intent recognition system for artificial legs.
    Zhang F; Dou Z; Nunnery M; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():2997-3000. PubMed ID: 22254971
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Source selection for real-time user intent recognition toward volitional control of artificial legs.
    Fan Zhang ; He Huang
    IEEE J Biomed Health Inform; 2013 Sep; 17(5):907-14. PubMed ID: 25055369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward design of an environment-aware adaptive locomotion-mode-recognition system.
    Du L; Zhang F; Liu M; Huang H
    IEEE Trans Biomed Eng; 2012 Oct; 59(10):2716-25. PubMed ID: 22996721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving the performance of a neural-machine interface for artificial legs using prior knowledge of walking environment.
    Huang H; Dou Z; Zhang F; Nunnery MJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4255-8. PubMed ID: 22255279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Method for Locomotion Mode Identification Using Muscle Synergies.
    Afzal T; Iqbal K; White G; Wright AB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):608-617. PubMed ID: 27362983
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the performance of a neural-machine interface for prosthetic legs using adaptive pattern classifiers.
    Du L; Zhang F; He H; Huang H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1571-4. PubMed ID: 24110001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A locomotion intent prediction system based on multi-sensor fusion.
    Chen B; Zheng E; Wang Q
    Sensors (Basel); 2014 Jul; 14(7):12349-69. PubMed ID: 25014097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering platform and experimental protocol for design and evaluation of a neurally-controlled powered transfemoral prosthesis.
    Zhang F; Liu M; Harper S; Lee M; Huang H
    J Vis Exp; 2014 Jul; (89):. PubMed ID: 25079449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Noncontact Capacitive Sensing-Based Locomotion Transition Recognition for Amputees With Robotic Transtibial Prostheses.
    Zheng E; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2017 Feb; 25(2):161-170. PubMed ID: 26890910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Locomotion mode identification for lower limbs using neuromuscular and joint kinematic signals.
    Afzal T; White G; Wright AB; Iqbal K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():4071-4. PubMed ID: 25570886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-Time On-Board Recognition of Continuous Locomotion Modes for Amputees With Robotic Transtibial Prostheses.
    Xu D; Feng Y; Mai J; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2015-2025. PubMed ID: 30334741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A noncontact capacitive sensing system for recognizing locomotion modes of transtibial amputees.
    Zheng E; Wang L; Wei K; Wang Q
    IEEE Trans Biomed Eng; 2014 Dec; 61(12):2911-20. PubMed ID: 25014949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an Environment-Aware Locomotion Mode Recognition System for Powered Lower Limb Prostheses.
    Liu M; Wang D; Helen Huang H
    IEEE Trans Neural Syst Rehabil Eng; 2016 Apr; 24(4):434-43. PubMed ID: 25879962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A strategy for identifying locomotion modes using surface electromyography.
    Huang H; Kuiken TA; Lipschutz RD
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):65-73. PubMed ID: 19224720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A training method for locomotion mode prediction using powered lower limb prostheses.
    Young AJ; Simon AM; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locomotion mode classification using a wearable capacitive sensing system.
    Chen B; Zheng E; Fan X; Liang T; Wang Q; Wei K; Wang L
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):744-55. PubMed ID: 23694674
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous Locomotion Mode and Task Identification for an Assistive Exoskeleton Based on Neuromuscular-Mechanical Fusion.
    Liu Y; Chen C; Wang Z; Tian Y; Wang S; Xiao Y; Yang F; Wu X
    Bioengineering (Basel); 2024 Feb; 11(2):. PubMed ID: 38391636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.