These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 21768042)
21. Resolving the effect of wrist position on myoelectric pattern recognition control. Adewuyi AA; Hargrove LJ; Kuiken TA J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991 [TBL] [Abstract][Full Text] [Related]
22. The Role of Surface Electromyography in Data Fusion with Inertial Sensors to Enhance Locomotion Recognition and Prediction. Meng L; Pang J; Wang Z; Xu R; Ming D Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577498 [TBL] [Abstract][Full Text] [Related]
23. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes. Young AJ; Simon A; Hargrove LJ Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005 [TBL] [Abstract][Full Text] [Related]
24. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions. Zhang F; Liu M; Huang H PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084 [TBL] [Abstract][Full Text] [Related]
25. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees. Khademi G; Mohammadi H; Simon D Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668 [TBL] [Abstract][Full Text] [Related]
26. A Locomotion Mode Recognition Algorithm Using Adaptive Dynamic Movement Primitives. Eken H; Lanotte F; Papapicco V; Penna MF; Gruppioni E; Trigili E; Crea S; Vitiello N IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4318-4328. PubMed ID: 37883286 [TBL] [Abstract][Full Text] [Related]
27. Interface Prostheses With Classifier-Feedback-Based User Training. Fang Y; Zhou D; Li K; Liu H IEEE Trans Biomed Eng; 2017 Nov; 64(11):2575-2583. PubMed ID: 28026744 [TBL] [Abstract][Full Text] [Related]
28. High energy spectrogram with integrated prior knowledge for EMG-based locomotion classification. Joshi D; Nakamura BH; Hahn ME Med Eng Phys; 2015 May; 37(5):518-24. PubMed ID: 25862333 [TBL] [Abstract][Full Text] [Related]
29. Preliminary study of the effect of user intent recognition errors on volitional control of powered lower limb prostheses. Zhang F; Liu M; Huang H Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():2768-71. PubMed ID: 23366499 [TBL] [Abstract][Full Text] [Related]
30. Locomotion Mode Recognition With Robotic Transtibial Prosthesis in Inter-Session and Inter-Day Applications. Zheng E; Wang Q; Qiao H IEEE Trans Neural Syst Rehabil Eng; 2019 Sep; 27(9):1836-1845. PubMed ID: 31403436 [TBL] [Abstract][Full Text] [Related]
31. Design of a robust EMG sensing interface for pattern classification. Huang H; Zhang F; Sun YL; He H J Neural Eng; 2010 Oct; 7(5):056005. PubMed ID: 20811091 [TBL] [Abstract][Full Text] [Related]
32. A special purpose embedded system for neural machine interface for artificial legs. Zhang X; Huang H; Yang Q Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():5207-10. PubMed ID: 22255511 [TBL] [Abstract][Full Text] [Related]
33. PSO-SVM-Based Online Locomotion Mode Identification for Rehabilitation Robotic Exoskeletons. Long Y; Du ZJ; Wang WD; Zhao GY; Xu GQ; He L; Mao XW; Dong W Sensors (Basel); 2016 Sep; 16(9):. PubMed ID: 27598160 [TBL] [Abstract][Full Text] [Related]
34. Terrain and Direction Classification of Locomotion Transitions Using Neuromuscular and Mechanical Input. Joshi D; Hahn ME Ann Biomed Eng; 2016 Apr; 44(4):1275-84. PubMed ID: 26224525 [TBL] [Abstract][Full Text] [Related]
35. Controlling propulsive forces in gait initiation in transfemoral amputees. van Keeken HG; Vrieling AH; Hof AL; Halbertsma JP; Schoppen T; Postema K; Otten B J Biomech Eng; 2008 Feb; 130(1):011002. PubMed ID: 18298178 [TBL] [Abstract][Full Text] [Related]
36. A Classification Method for User-Independent Intent Recognition for Transfemoral Amputees Using Powered Lower Limb Prostheses. Young AJ; Hargrove LJ IEEE Trans Neural Syst Rehabil Eng; 2016 Feb; 24(2):217-25. PubMed ID: 25794392 [TBL] [Abstract][Full Text] [Related]
37. Robotic leg control with EMG decoding in an amputee with nerve transfers. Hargrove LJ; Simon AM; Young AJ; Lipschutz RD; Finucane SB; Smith DG; Kuiken TA N Engl J Med; 2013 Sep; 369(13):1237-42. PubMed ID: 24066744 [TBL] [Abstract][Full Text] [Related]
38. NLR, MLP, SVM, and LDA: a comparative analysis on EMG data from people with trans-radial amputation. Dellacasa Bellingegni A; Gruppioni E; Colazzo G; Davalli A; Sacchetti R; Guglielmelli E; Zollo L J Neuroeng Rehabil; 2017 Aug; 14(1):82. PubMed ID: 28807038 [TBL] [Abstract][Full Text] [Related]
39. User-Independent Intent Recognition for Lower Limb Prostheses Using Depth Sensing. Massalin Y; Abdrakhmanova M; Varol HA IEEE Trans Biomed Eng; 2018 Aug; 65(8):1759-1770. PubMed ID: 29989950 [TBL] [Abstract][Full Text] [Related]
40. Stiffness and position control of a prosthetic wrist by means of an EMG interface. Rao S; Carloni R; Stramigioli S Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():495-8. PubMed ID: 21096538 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]