These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

306 related articles for article (PubMed ID: 21768121)

  • 1. Neural decoding of treadmill walking from noninvasive electroencephalographic signals.
    Presacco A; Goodman R; Forrester L; Contreras-Vidal JL
    J Neurophysiol; 2011 Oct; 106(4):1875-87. PubMed ID: 21768121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decoding intra-limb and inter-limb kinematics during treadmill walking from scalp electroencephalographic (EEG) signals.
    Presacco A; Forrester LW; Contreras-Vidal JL
    IEEE Trans Neural Syst Rehabil Eng; 2012 Mar; 20(2):212-9. PubMed ID: 22438336
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards a non-invasive brain-machine interface system to restore gait function in humans.
    Presacco A; Forrester L; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4588-91. PubMed ID: 22255359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gait adaptation to visual kinematic perturbations using a real-time closed-loop brain-computer interface to a virtual reality avatar.
    Luu TP; He Y; Brown S; Nakagame S; Contreras-Vidal JL
    J Neural Eng; 2016 Jun; 13(3):036006. PubMed ID: 27064824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unscented Kalman filter for neural decoding of human treadmill walking from non-invasive electroencephalography.
    Trieu Phat Luu ; Yongtian He ; Nakagame S; Gorges J; Nathan K; Contreras-Vidal JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1548-1551. PubMed ID: 28268622
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous scalp electroencephalography (EEG), electromyography (EMG), and whole-body segmental inertial recording for multi-modal neural decoding.
    Bulea TC; Kilicarslan A; Ozdemir R; Paloski WH; Contreras-Vidal JL
    J Vis Exp; 2013 Jul; (77):. PubMed ID: 23912203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of the most common gait perturbations on the compensatory limb's ankle, knee, and hip moments during the first stepping response.
    Yoo D; Seo KH; Lee BC
    Gait Posture; 2019 Jun; 71():98-104. PubMed ID: 31031225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accuracy of the Microsoft Kinect for measuring gait parameters during treadmill walking.
    Xu X; McGorry RW; Chou LS; Lin JH; Chang CC
    Gait Posture; 2015 Jul; 42(2):145-51. PubMed ID: 26002604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait strategies to reduce the dynamic joint load in the lower limbs during a loading response in young healthy adults.
    Tajima T; Tateuchi H; Koyama Y; Ikezoe T; Ichihashi N
    Hum Mov Sci; 2018 Apr; 58():260-267. PubMed ID: 29524851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cortical control of normal gait and precision stepping: an fNIRS study.
    Koenraadt KL; Roelofsen EG; Duysens J; Keijsers NL
    Neuroimage; 2014 Jan; 85 Pt 1():415-22. PubMed ID: 23631980
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of below-knee child amputee gait: SACH foot versus Flex foot.
    Schneider K; Hart T; Zernicke RF; Setoguchi Y; Oppenheim W
    J Biomech; 1993 Oct; 26(10):1191-204. PubMed ID: 8253824
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinematic comparison of split-belt and single-belt treadmill walking and the effects of accommodation.
    Altman AR; Reisman DS; Higginson JS; Davis IS
    Gait Posture; 2012 Feb; 35(2):287-91. PubMed ID: 22015048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in leg movements and muscle activity with speed of locomotion and mode of progression in humans.
    Nilsson J; Thorstensson A; Halbertsma J
    Acta Physiol Scand; 1985 Apr; 123(4):457-75. PubMed ID: 3993402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic structure of variability in joint angles and center of mass position during user-driven treadmill walking.
    Kempski KM; Ray NT; Knarr BA; Higginson JS
    Gait Posture; 2019 Jun; 71():241-244. PubMed ID: 31082656
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emergence of Distinct Neural Subspaces in Motor Cortical Dynamics during Volitional Adjustments of Ongoing Locomotion.
    Xing D; Truccolo W; Borton DA
    J Neurosci; 2022 Dec; 42(49):9142-9157. PubMed ID: 36283830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-joint coordination of overground versus treadmill walking in young adults.
    Chiu SL; Chang CC; Chou LS
    Gait Posture; 2015 Jan; 41(1):316-8. PubMed ID: 25304089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gait evaluation of new powered knee-ankle-foot orthosis in able-bodied persons: a pilot study.
    Arazpour M; Ahmadi F; Bani MA; Hutchins SW; Bahramizadeh M; Ghomshe FT; Kashani RV
    Prosthet Orthot Int; 2014 Feb; 38(1):39-45. PubMed ID: 23660383
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance-based approach for movement artifact removal from electroencephalographic data recorded during locomotion.
    Arad E; Bartsch RP; Kantelhardt JW; Plotnik M
    PLoS One; 2018; 13(5):e0197153. PubMed ID: 29768471
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Comparison of Both Motorized and Nonmotorized Treadmill Gait Kinematics to Overground Locomotion.
    Fullenkamp AM; Tolusso DV; Laurent CM; Campbell BM; Cripps AE
    J Sport Rehabil; 2018 Jul; 27(4):357-363. PubMed ID: 28605231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.