These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 2176869)

  • 1. Essential residues in angiotensin converting enzyme: modification with 1-fluoro-2,4-dinitrobenzene.
    Bünning P; Kleemann SG; Riordan JF
    Biochemistry; 1990 Nov; 29(46):10488-92. PubMed ID: 2176869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of essential tyrosine and lysine residues in angiotensin converting enzyme: evidence for a single active site.
    Chen YN; Riordan JF
    Biochemistry; 1990 Nov; 29(46):10493-8. PubMed ID: 2176870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The nature of inactivation of rat muscle 5'-adenylate aminohydrolase by fluorodinitrobenzene.
    Raggi A; Bergamini C; Ronca G
    Biochem J; 1975 Feb; 145(2):145-51. PubMed ID: 1156354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Peptide inhibitors and the active site(s) of angiotensin converting enzyme.
    Riordan JF; Chen YN; Kleemann SG; Bünning P
    Biomed Biochim Acta; 1991; 50(4-6):809-14. PubMed ID: 1666286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Angiotensin-converting enzyme: zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes.
    Ehlers MR; Riordan JF
    Biochemistry; 1991 Jul; 30(29):7118-26. PubMed ID: 1649623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical lysine residue at the chloride binding site of angiotensin converting enzyme.
    Shapiro R; Riordan JF
    Biochemistry; 1983 Nov; 22(23):5315-21. PubMed ID: 6317019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modification of D-amino acid oxidase. Amino acid sequence of the tryptic peptides containing tyrosine and lysine residues modified by fluorodinitrobenzene.
    Swenson RP; Williams CH; Massey V
    J Biol Chem; 1982 Feb; 257(4):1937-44. PubMed ID: 6120171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peptidase specificity characterization of C- and N-terminal catalytic sites of angiotensin I-converting enzyme.
    Araujo MC; Melo RL; Cesari MH; Juliano MA; Juliano L; Carmona AK
    Biochemistry; 2000 Jul; 39(29):8519-25. PubMed ID: 10913258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-domain angiotensin I converting enzyme (kininase II): characterization and properties.
    Deddish PA; Wang LX; Jackman HL; Michel B; Wang J; Skidgel RA; Erdös EG
    J Pharmacol Exp Ther; 1996 Dec; 279(3):1582-9. PubMed ID: 8968386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of the zinc contents and substrate specificities of the endothelial and testicular forms of porcine angiotensin converting enzyme and the preparation of isoenzyme-specific antisera.
    Williams TA; Barnes K; Kenny AJ; Turner AJ; Hooper NM
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):875-81. PubMed ID: 1335236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The catalytic mechanism of angiotensin converting enzyme and related zinc enzymes.
    Riordan JF; Harper JW; Martin M
    J Cardiovasc Pharmacol; 1986; 8 Suppl 10():S29-34. PubMed ID: 2438487
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiotensin converting enzyme binding sites in human heart and lung: comparison with rat tissues.
    Vago T; Bevilacqua M; Conci F; Baldi G; Ongini E; Chebat E; Monopoli A; Norbiato G
    Br J Pharmacol; 1992 Nov; 107(3):821-5. PubMed ID: 1335341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The influence of angiotensin converting enzyme mutations on the kinetics and dynamics of N-domain selective inhibition.
    Lubbe L; Sewell BT; Sturrock ED
    FEBS J; 2016 Nov; 283(21):3941-3961. PubMed ID: 27636235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of angiotensin-converting enzyme by angiotensin I analogue peptide inhibitors. A kinetic study.
    Páldi A; Móra M; Bajusz S; Gráf L
    Int J Pept Protein Res; 1987 Jun; 29(6):746-54. PubMed ID: 3040610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel internally quenched fluorogenic substrates for angiotensin I-converting enzyme and carboxypeptidase Y.
    Takahashi S; Ono H; Gotoh T; Yoshizawa-Kumagaye K; Sugiyama T
    Biomed Res; 2011 Dec; 32(6):407-11. PubMed ID: 22199132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histochemical modification of the active site of succinate dehydrogenase with N-acetylimidazole.
    Nakae Y; Shono M
    Histochem J; 1986 Apr; 18(4):169-74. PubMed ID: 3733466
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of chemical properties of individual histidine and tyrosine residues of concanavalin A by competitive labeling with 1-fluoro-2,4-dinitrobenzene.
    Jackson GE; Young NM
    Biochemistry; 1986 Apr; 25(7):1657-62. PubMed ID: 3707899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibition of [3H]captopril binding by peptide analog angiotensin converting enzyme inhibitors.
    Toll L; Almquist RG
    Biochem Biophys Res Commun; 1986 Mar; 135(3):770-7. PubMed ID: 3008745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic spectroscopy of cobalt angiotensin converting enzyme and its inhibitor complexes.
    Bicknell R; Holmquist B; Lee FS; Martin MT; Riordan JF
    Biochemistry; 1987 Nov; 26(23):7291-7. PubMed ID: 2827750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutations in two specific residues of testicular angiotensin-converting enzyme change its catalytic properties.
    Sen I; Kasturi S; Abdul Jabbar M; Sen GC
    J Biol Chem; 1993 Dec; 268(34):25748-54. PubMed ID: 7902354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.