These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 2176870)
1. Identification of essential tyrosine and lysine residues in angiotensin converting enzyme: evidence for a single active site. Chen YN; Riordan JF Biochemistry; 1990 Nov; 29(46):10493-8. PubMed ID: 2176870 [TBL] [Abstract][Full Text] [Related]
3. Peptide inhibitors and the active site(s) of angiotensin converting enzyme. Riordan JF; Chen YN; Kleemann SG; Bünning P Biomed Biochim Acta; 1991; 50(4-6):809-14. PubMed ID: 1666286 [TBL] [Abstract][Full Text] [Related]
4. Chemical modification of D-amino acid oxidase. Amino acid sequence of the tryptic peptides containing tyrosine and lysine residues modified by fluorodinitrobenzene. Swenson RP; Williams CH; Massey V J Biol Chem; 1982 Feb; 257(4):1937-44. PubMed ID: 6120171 [TBL] [Abstract][Full Text] [Related]
5. A comparison of the zinc contents and substrate specificities of the endothelial and testicular forms of porcine angiotensin converting enzyme and the preparation of isoenzyme-specific antisera. Williams TA; Barnes K; Kenny AJ; Turner AJ; Hooper NM Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):875-81. PubMed ID: 1335236 [TBL] [Abstract][Full Text] [Related]
6. Angiotensin-converting enzyme: zinc- and inhibitor-binding stoichiometries of the somatic and testis isozymes. Ehlers MR; Riordan JF Biochemistry; 1991 Jul; 30(29):7118-26. PubMed ID: 1649623 [TBL] [Abstract][Full Text] [Related]
7. Determination of chemical properties of individual histidine and tyrosine residues of concanavalin A by competitive labeling with 1-fluoro-2,4-dinitrobenzene. Jackson GE; Young NM Biochemistry; 1986 Apr; 25(7):1657-62. PubMed ID: 3707899 [TBL] [Abstract][Full Text] [Related]
8. Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine beta-lactoglobulin. Mullally MM; Meisel H; FitzGerald RJ FEBS Lett; 1997 Feb; 402(2-3):99-101. PubMed ID: 9037174 [TBL] [Abstract][Full Text] [Related]
9. Molecular cloning of human testicular angiotensin-converting enzyme: the testis isozyme is identical to the C-terminal half of endothelial angiotensin-converting enzyme. Ehlers MR; Fox EA; Strydom DJ; Riordan JF Proc Natl Acad Sci U S A; 1989 Oct; 86(20):7741-5. PubMed ID: 2554286 [TBL] [Abstract][Full Text] [Related]
10. Positional-scanning combinatorial libraries of fluorescence resonance energy transfer peptides for defining substrate specificity of the angiotensin I-converting enzyme and development of selective C-domain substrates. Bersanetti PA; Andrade MC; Casarini DE; Juliano MA; Nchinda AT; Sturrock ED; Juliano L; Carmona AK Biochemistry; 2004 Dec; 43(50):15729-36. PubMed ID: 15595828 [TBL] [Abstract][Full Text] [Related]
11. Naturally occurring active N-domain of human angiotensin I-converting enzyme. Deddish PA; Wang J; Michel B; Morris PW; Davidson NO; Skidgel RA; Erdös EG Proc Natl Acad Sci U S A; 1994 Aug; 91(16):7807-11. PubMed ID: 8052664 [TBL] [Abstract][Full Text] [Related]
12. Peptidase specificity characterization of C- and N-terminal catalytic sites of angiotensin I-converting enzyme. Araujo MC; Melo RL; Cesari MH; Juliano MA; Juliano L; Carmona AK Biochemistry; 2000 Jul; 39(29):8519-25. PubMed ID: 10913258 [TBL] [Abstract][Full Text] [Related]
13. Hemorphins derived from hemoglobin have an inhibitory action on angiotensin converting enzyme activity. Lantz I; Glämsta EL; Talbäck L; Nyberg F FEBS Lett; 1991 Aug; 287(1-2):39-41. PubMed ID: 1652464 [TBL] [Abstract][Full Text] [Related]
14. L-lactate-2-monooxygenase. Sequence of peptides containing residues modified by 1-fluoro-2,4-dinitrobenzene. Giegel DA; Massey V; Williams CH J Biol Chem; 1987 Apr; 262(12):5705-10. PubMed ID: 3571231 [TBL] [Abstract][Full Text] [Related]
15. Novel internally quenched fluorogenic substrates for angiotensin I-converting enzyme and carboxypeptidase Y. Takahashi S; Ono H; Gotoh T; Yoshizawa-Kumagaye K; Sugiyama T Biomed Res; 2011 Dec; 32(6):407-11. PubMed ID: 22199132 [TBL] [Abstract][Full Text] [Related]
16. Novel activity of angiotensin-converting enzyme. Hydrolysis of cholecystokinin and gastrin analogues with release of the amidated C-terminal dipeptide. Dubreuil P; Fulcrand P; Rodriguez M; Fulcrand H; Laur J; Martinez J Biochem J; 1989 Aug; 262(1):125-30. PubMed ID: 2554881 [TBL] [Abstract][Full Text] [Related]
17. Mutations in two specific residues of testicular angiotensin-converting enzyme change its catalytic properties. Sen I; Kasturi S; Abdul Jabbar M; Sen GC J Biol Chem; 1993 Dec; 268(34):25748-54. PubMed ID: 7902354 [TBL] [Abstract][Full Text] [Related]
18. Angiotensin-converting enzyme-2 (ACE2): comparative modeling of the active site, specificity requirements, and chloride dependence. Guy JL; Jackson RM; Acharya KR; Sturrock ED; Hooper NM; Turner AJ Biochemistry; 2003 Nov; 42(45):13185-92. PubMed ID: 14609329 [TBL] [Abstract][Full Text] [Related]
19. A comparison of guinea pig serum angiotensin converting enzyme with forms of angiotensin converting enzyme from human, rat and rabbit tissues. Ryan JW; Valido FA; Chung AY; Ripka JE; Peterson CM; Urry RL Biochem Biophys Res Commun; 1993 Oct; 196(2):509-14. PubMed ID: 8240321 [TBL] [Abstract][Full Text] [Related]
20. The influence of angiotensin converting enzyme mutations on the kinetics and dynamics of N-domain selective inhibition. Lubbe L; Sewell BT; Sturrock ED FEBS J; 2016 Nov; 283(21):3941-3961. PubMed ID: 27636235 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]