BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 2176886)

  • 1. Oxidation-reduction potentials of flavin and Mo-pterin centers in assimilatory nitrate reductase: variation with pH.
    Kay CJ; Solomonson LP; Barber MJ
    Biochemistry; 1990 Dec; 29(48):10823-8. PubMed ID: 2176886
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular dichroism and potentiometry of FAD, heme and Mo-pterin prosthetic groups of assimilatory nitrate reductase.
    Kay CJ; Barber MJ; Solomonson LP
    Biochemistry; 1988 Aug; 27(16):6142-9. PubMed ID: 2847786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical and kinetic analysis of electron-transfer reactions of Chlorella nitrate reductase.
    Kay CJ; Solomonson LP; Barber MJ
    Biochemistry; 1991 Dec; 30(48):11445-50. PubMed ID: 1742283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stoichiometry of electron uptake and oxidation-reduction midpoint potentials of NADH:nitrate reductase.
    Spence JT; Barber MJ; Solomonson LP
    Biochem J; 1988 Mar; 250(3):921-3. PubMed ID: 3390146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation-reduction midpoint potentials of the molybdenum center in spinach NADH:nitrate reductase.
    Barber MJ; Notton BA; Solomonson LP
    FEBS Lett; 1987 Mar; 213(2):372-4. PubMed ID: 3030817
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation--reduction midpoint potentials of the flavin, haem and Mo-pterin centres in spinach (Spinacia oleracea L.) nitrate reductase.
    Kay CJ; Barber MJ; Notton BA; Solomonson LP
    Biochem J; 1989 Oct; 263(1):285-7. PubMed ID: 2604699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron paramagnetic resonance studies on the molybdenum center of assimilatory NADH:nitrate reductase from Chlorella vulgaris.
    Solomonson LP; Barber MJ; Howard WD; Johnson JL; Rajagopalan KV
    J Biol Chem; 1984 Jan; 259(2):849-53. PubMed ID: 6319388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic, thermodynamic and kinetic properties of Candida nitratophila nitrate reductase.
    Kay CJ; Barber MJ; Solomonson LP; Kau D; Cannons AC; Hipkin CR
    Biochem J; 1990 Dec; 272(2):545-8. PubMed ID: 2268283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and bacterial expression of a gene encoding the heme domain of assimilatory nitrate reductase.
    Barber MJ; Desai SK; Marohnic CC; Hernandez HH; Pollock VV
    Arch Biochem Biophys; 2002 Jun; 402(1):38-50. PubMed ID: 12051681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The room temperature potentiometry of xanthine oxidase. pH-dependent redox behavior of the flavin, molybdenum, and iron-sulfur centers.
    Porras AG; Palmer G
    J Biol Chem; 1982 Oct; 257(19):11617-26. PubMed ID: 6896874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. EPR and kinetic analysis of the interaction of halides and phosphate with nitrate reductase.
    Kay CJ; Barber MJ
    Biochemistry; 1989 Jul; 28(14):5750-8. PubMed ID: 2550063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tuning a nitrate reductase for function. The first spectropotentiometric characterization of a bacterial assimilatory nitrate reductase reveals novel redox properties.
    Jepson BJ; Anderson LJ; Rubio LM; Taylor CJ; Butler CS; Flores E; Herrero A; Butt JN; Richardson DJ
    J Biol Chem; 2004 Jul; 279(31):32212-8. PubMed ID: 15166246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reductive activation in periplasmic nitrate reductase involves chemical modifications of the Mo-cofactor beyond the first coordination sphere of the metal ion.
    Jacques JG; Fourmond V; Arnoux P; Sabaty M; Etienne E; Grosse S; Biaso F; Bertrand P; Pignol D; Léger C; Guigliarelli B; Burlat B
    Biochim Biophys Acta; 2014 Feb; 1837(2):277-86. PubMed ID: 24212053
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic properties of the heme prosthetic group in assimilatory nitrate reductase.
    Kay CJ; Solomonson LP; Barber MJ
    J Biol Chem; 1986 May; 261(13):5799-802. PubMed ID: 3700373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Purification and characterization of the assimilatory nitrate reductase of Azotobacter vinelandii.
    Gangeswaran R; Lowe DJ; Eady RR
    Biochem J; 1993 Jan; 289 ( Pt 2)(Pt 2):335-42. PubMed ID: 8380991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic studies of the molybdenum-containing dimethyl sulfoxide reductase from Rhodobacter sphaeroides f. sp. denitrificans.
    Bastian NR; Kay CJ; Barber MJ; Rajagopalan KV
    J Biol Chem; 1991 Jan; 266(1):45-51. PubMed ID: 1845974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of arsenite-complexed xanthine oxidase at room temperature. Spectral properties and pH-dependent redox behavior of the molybdenum-arsenite center.
    Stewart RC; Hille R; Massey V
    J Biol Chem; 1984 Dec; 259(23):14426-36. PubMed ID: 6094556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial expression of the molybdenum domain of assimilatory nitrate reductase: production of both the functional molybdenum-containing domain and the nonfunctional tungsten analog.
    Pollock VV; Conover RC; Johnson MK; Barber MJ
    Arch Biochem Biophys; 2002 Jul; 403(2):237-48. PubMed ID: 12139973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression and characterization of the heme-binding domain of Chlorella nitrate reductase.
    Cannons AC; Barber MJ; Solomonson LP
    J Biol Chem; 1993 Feb; 268(5):3268-71. PubMed ID: 8429004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Further characterisation of the FAD and Fe2S2 redox centres of component C, the NADH:acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath).
    Lund J; Dalton H
    Eur J Biochem; 1985 Mar; 147(2):291-6. PubMed ID: 2982614
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.