BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 21769063)

  • 1. Integrated one-pot enrichment and immobilization of styrene monooxygenase (StyA) using SEPABEAD EC-EA and EC-Q1A anion-exchange carriers.
    Ruinatscha R; Karande R; Buehler K; Schmid A
    Molecules; 2011 Jul; 16(7):5975-88. PubMed ID: 21769063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation.
    Corrado ML; Knaus T; Mutti FG
    Chembiochem; 2018 Apr; 19(7):679-686. PubMed ID: 29378090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible immobilization of glutaryl acylase on sepabeads coated with polyethyleneimine.
    Alonso-Morales N; López-Gallego F; Betancor L; Hidalgo A; Mateo C; Fernández-Lafuente R; Guisán JM
    Biotechnol Prog; 2004; 20(2):533-6. PubMed ID: 15058999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization and stabilization of α-galactosidase on Sepabeads EC-EA and EC-HA.
    Bayraktar H; Serilmez M; Karkaş T; Celem EB; Onal S
    Int J Biol Macromol; 2011 Nov; 49(4):855-60. PubMed ID: 21871914
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemical characterization of StyAB from Pseudomonas sp. strain VLB120 as a two-component flavin-diffusible monooxygenase.
    Otto K; Hofstetter K; Röthlisberger M; Witholt B; Schmid A
    J Bacteriol; 2004 Aug; 186(16):5292-302. PubMed ID: 15292130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible immobilization of glucoamylase by ionic adsorption on sepabeads coated with polyethyleneimine.
    Torres R; Pessela BC; Mateo C; Ortiz C; Fuentes M; Guisan JM; Fernandez-Lafuente R
    Biotechnol Prog; 2004; 20(4):1297-300. PubMed ID: 15296467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Catalytic and hydrodynamic properties of styrene monooxygenases from Rhodococcus opacus 1CP are modulated by cofactor binding.
    Riedel A; Heine T; Westphal AH; Conrad C; Rathsack P; van Berkel WJ; Tischler D
    AMB Express; 2015 Dec; 5(1):112. PubMed ID: 26054733
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Practical application of different enzymes immobilized on sepabeads.
    Hilterhaus L; Minow B; Müller J; Berheide M; Quitmann H; Katzer M; Thum O; Antranikian G; Zeng AP; Liese A
    Bioprocess Biosyst Eng; 2008 Apr; 31(3):163-71. PubMed ID: 18239944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stereospecific biocatalytic epoxidation: the first example of direct regeneration of a FAD-dependent monooxygenase for catalysis.
    Hollmann F; Lin PC; Witholt B; Schmid A
    J Am Chem Soc; 2003 Jul; 125(27):8209-17. PubMed ID: 12837091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Immobilization of lipase from Candida rugosa on Sepabeads(®): the effect of lipase oxidation by periodates.
    Prlainović NZ; Knežević-Jugović ZD; Mijin DZ; Bezbradica DI
    Bioprocess Biosyst Eng; 2011 Sep; 34(7):803-10. PubMed ID: 21347667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The styrene monooxygenase system.
    Gassner GT
    Methods Enzymol; 2019; 620():423-453. PubMed ID: 31072496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immobilization of the glucose isomerase from Caldicoprobacter algeriensis on Sepabeads EC-HA and its efficient application in continuous High Fructose Syrup production using packed bed reactor.
    Neifar S; Cervantes FV; Bouanane-Darenfed A; BenHlima H; Ballesteros AO; Plou FJ; Bejar S
    Food Chem; 2020 Mar; 309():125710. PubMed ID: 31704076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FAD C(4a)-hydroxide stabilized in a naturally fused styrene monooxygenase.
    Tischler D; Schlömann M; van Berkel WJ; Gassner GT
    FEBS Lett; 2013 Nov; 587(23):3848-52. PubMed ID: 24157359
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biotechnological production of vanillin using immobilized enzymes.
    Furuya T; Kuroiwa M; Kino K
    J Biotechnol; 2017 Feb; 243():25-28. PubMed ID: 28042012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micro-scale procedure for enzyme immobilization screening and operational stability assays.
    Fernandez-Arrojo L; Santos-Moriano P; Rodriguez-Colinas B; Ballesteros AO; Plou FJ
    Biotechnol Lett; 2015 Aug; 37(8):1593-600. PubMed ID: 25854993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mechanistic study on SMOB-ADP1: an NADH:flavin oxidoreductase of the two-component styrene monooxygenase of Acinetobacter baylyi ADP1.
    Gröning JA; Kaschabek SR; Schlömann M; Tischler D
    Arch Microbiol; 2014 Dec; 196(12):829-45. PubMed ID: 25116410
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression and characterization of styrene monooxygenases of Rhodococcus sp. ST-5 and ST-10 for synthesizing enantiopure (S)-epoxides.
    Toda H; Imae R; Komio T; Itoh N
    Appl Microbiol Biotechnol; 2012 Oct; 96(2):407-18. PubMed ID: 22258641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins.
    Heine T; Tucker K; Okonkwo N; Assefa B; Conrad C; Scholtissek A; Schlömann M; Gassner G; Tischler D
    Appl Biochem Biotechnol; 2017 Apr; 181(4):1590-1610. PubMed ID: 27830466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminus determines activity and specificity of styrene monooxygenase reductases.
    Heine T; Scholtissek A; Westphal AH; van Berkel WJH; Tischler D
    Biochim Biophys Acta Proteins Proteom; 2017 Dec; 1865(12):1770-1780. PubMed ID: 28888693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enantioselective substrate binding in a monooxygenase protein model by molecular dynamics and docking.
    Feenstra KA; Hofstetter K; Bosch R; Schmid A; Commandeur JN; Vermeulen NP
    Biophys J; 2006 Nov; 91(9):3206-16. PubMed ID: 16905618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.