These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 21769301)

  • 1. Thermostability of biological systems: fundamentals, challenges, and quantification.
    He X
    Open Biomed Eng J; 2011; 5():47-73. PubMed ID: 21769301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Principles Underlying Cryopreservation and Freeze-Drying of Cells and Tissues.
    Wolkers WF; Oldenhof H
    Methods Mol Biol; 2021; 2180():3-25. PubMed ID: 32797407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Principles of Ice-Free Cryopreservation by Vitrification.
    Fahy GM; Wowk B
    Methods Mol Biol; 2021; 2180():27-97. PubMed ID: 32797408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotransport phenomena in freezing mammalian oocytes.
    Yang G; Veres M; Szalai G; Zhang A; Xu LX; He X
    Ann Biomed Eng; 2011 Jan; 39(1):580-91. PubMed ID: 20848315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Why Does Cronobacter sakazakii Survive for a Long Time in Dry Environments? Contribution of the Glass Transition of Dried Bacterial Cells.
    Lee K; Koyama K; Kawai K; Koseki S
    Microbiol Spectr; 2021 Dec; 9(3):e0138421. PubMed ID: 34908438
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Collapse temperature of solutions important for lyopreservation of living cells at ambient temperature.
    Yang G; Gilstrap K; Zhang A; Xu LX; He X
    Biotechnol Bioeng; 2010 Jun; 106(2):247-59. PubMed ID: 20148402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DSC Analysis of Thermophysical Properties for Biomaterials and Formulations.
    Sun WQ
    Methods Mol Biol; 2021; 2180():285-302. PubMed ID: 32797416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strong isotope effects on melting dynamics and ice crystallisation processes in cryo vitrification solutions.
    Kirichek O; Soper A; Dzyuba B; Callear S; Fuller B
    PLoS One; 2015; 10(3):e0120611. PubMed ID: 25815751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cryopreservation by vitrification: a promising approach for transplant organ banking.
    Finger EB; Bischof JC
    Curr Opin Organ Transplant; 2018 Jun; 23(3):353-360. PubMed ID: 29702495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryoprotectants: A review of the actions and applications of cryoprotective solutes that modulate cell recovery from ultra-low temperatures.
    Elliott GD; Wang S; Fuller BJ
    Cryobiology; 2017 Jun; 76():74-91. PubMed ID: 28428046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calorimetric analysis of cryopreservation and freeze-drying formulations.
    Sun WQ
    Methods Mol Biol; 2015; 1257():163-79. PubMed ID: 25428006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intracellular ice formation and growth in MCF-7 cancer cells.
    Yang G; Zhang A; Xu LX
    Cryobiology; 2011 Aug; 63(1):38-45. PubMed ID: 21536022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano-cryosurgery: advances and challenges.
    Liu J; Deng ZS
    J Nanosci Nanotechnol; 2009 Aug; 9(8):4521-42. PubMed ID: 19928115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Low Temperature Limit for Life on Earth.
    Clarke A; Morris GJ; Fonseca F; Murray BJ; Acton E; Price HC
    PLoS One; 2013; 8(6):e66207. PubMed ID: 23840425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forced and natural convective drying of trehalose/water thin films: implication in the desiccation preservation of Mammalian cells.
    Chen B; Fowler A; Bhowmick S
    J Biomech Eng; 2006 Jun; 128(3):335-46. PubMed ID: 16706583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology.
    Choi J; Bischof JC
    Cryobiology; 2010 Feb; 60(1):52-70. PubMed ID: 19948163
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic nonequilibrium phase change behavior and thermal properties of biological solutions for cryobiology applications.
    Han B; Bischof JC
    J Biomech Eng; 2004 Apr; 126(2):196-203. PubMed ID: 15179849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-infrared laser mediated modulation of ice crystallization by two-dimensional nanosheets enables high-survival recovery of biological cells from cryogenic temperatures.
    Panhwar F; Chen Z; Hossain SMC; Wang M; Haider Z; Memon K; Chen P; Zhao G
    Nanoscale; 2018 Jul; 10(25):11760-11774. PubMed ID: 29770427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Starfish oocytes form intracellular ice at unusually high temperatures.
    Köseoğlu M; Eroğlu A; Toner M; Sadler KC
    Cryobiology; 2001 Nov; 43(3):248-59. PubMed ID: 11888218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic aspects of vitrification.
    Wowk B
    Cryobiology; 2010 Feb; 60(1):11-22. PubMed ID: 19538955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.