BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 21769362)

  • 1. Enhancement of hematoporphyrin IX potential for photodynamic therapy by entrapment in silica nanospheres.
    Silva PR; Vono LL; Espósito BP; Baptista MS; Rossi LM
    Phys Chem Chem Phys; 2011 Sep; 13(33):14946-52. PubMed ID: 21769362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy.
    Tada DB; Vono LL; Duarte EL; Itri R; Kiyohara PK; Baptista MS; Rossi LM
    Langmuir; 2007 Jul; 23(15):8194-9. PubMed ID: 17590032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Photogeneration of singlet molecular oxygen by the components of hematoporphyrin IX derivative].
    Egorov SIu; Tauber AIu; Krasnovskiĭ AA; Nizhnik AN; Nokel' AIu; Mironov AF
    Biull Eksp Biol Med; 1989 Oct; 108(10):440-2. PubMed ID: 2532043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bovine serum albumin nanospheres synchronously encapsulating "gold selenium/gold" nanoparticles and photosensitizer for high-efficiency cancer phototherapy.
    Yu C; Wo F; Shao Y; Dai X; Chu M
    Appl Biochem Biotechnol; 2013 Mar; 169(5):1566-78. PubMed ID: 23322252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocomposites containing gold nanorods and porphyrin-doped mesoporous silica with dual capability of two-photon imaging and photosensitization.
    Zhao T; Wu H; Yao SQ; Xu QH; Xu GQ
    Langmuir; 2010 Sep; 26(18):14937-42. PubMed ID: 20726559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physico-chemical modeling of the role of free radicals in photodynamic therapy. II. Interactions of ground state sensitizers with free radicals studied by chemiluminescence spectrometry.
    Vasvári G; Elzemzam S; Gál D
    Biochem Biophys Res Commun; 1993 Dec; 197(3):1536-42. PubMed ID: 8280173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silica-based nanoparticles for photodynamic therapy applications.
    Couleaud P; Morosini V; Frochot C; Richeter S; Raehm L; Durand JO
    Nanoscale; 2010 Jul; 2(7):1083-95. PubMed ID: 20648332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic-sensitive silica nanospheres for controlled drug release.
    Hu SH; Liu TY; Huang HY; Liu DM; Chen SY
    Langmuir; 2008 Jan; 24(1):239-44. PubMed ID: 18052081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved photodynamic inactivation of gram-positive bacteria using hematoporphyrin encapsulated in liposomes and micelles.
    Tsai T; Yang YT; Wang TH; Chien HF; Chen CT
    Lasers Surg Med; 2009 Apr; 41(4):316-22. PubMed ID: 19347938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A folic acid conjugated silica-titania porous hollow nanosphere for improved topical photodynamic therapy.
    Jang Y; Kim S; Oh WK; Kim C; Lee I; Jang J
    Chem Commun (Camb); 2014 Dec; 50(97):15345-7. PubMed ID: 25348554
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One pot synthesis of new hybrid versatile nanocarrier exhibiting efficient stability in biological environment for use in photodynamic therapy.
    Thienot E; Germain M; Piejos K; Simon V; Darmon A; Marill J; Borghi E; Levy L; Hochepied JF; Pottier A
    J Photochem Photobiol B; 2010 Jul; 100(1):1-9. PubMed ID: 20456971
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical properties of hematoporphyrin monomethyl ether (HMME), a PDT photosensitizer.
    Lei TC; Glazner GF; Duffy M; Scherrer L; Pendyala S; Li B; Wang X; Wang H; Huang Z
    Photodiagnosis Photodyn Ther; 2012 Sep; 9(3):232-42. PubMed ID: 22959803
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesoporous silica nanoparticle facilitated drug release through cascade photosensitizer activation and cleavage of singlet oxygen sensitive linker.
    Lee J; Park J; Singha K; Kim WJ
    Chem Commun (Camb); 2013 Feb; 49(15):1545-7. PubMed ID: 23325385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy.
    Roy I; Ohulchanskyy TY; Pudavar HE; Bergey EJ; Oseroff AR; Morgan J; Dougherty TJ; Prasad PN
    J Am Chem Soc; 2003 Jul; 125(26):7860-5. PubMed ID: 12823004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Early events in photodynamic therapy: chemical and physical changes in a POPC:cholesterol bilayer due to hematoporphyrin IX-mediated photosensitization.
    Santos A; Rodrigues AM; Sobral AJ; Monsanto PV; Vaz WL; Moreno MJ
    Photochem Photobiol; 2009; 85(6):1409-17. PubMed ID: 19706142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Spectral properties of new photosensitizers for photodynamic diagnosis and therapy].
    Li BH; Xie SS; Lu ZK
    Guang Pu Xue Yu Guang Pu Fen Xi; 2002 Dec; 22(6):902-4. PubMed ID: 12914159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional core-shell nanoparticles as highly efficient imaging and photosensitizing agents.
    Zhang R; Wu C; Tong L; Tang B; Xu QH
    Langmuir; 2009 Sep; 25(17):10153-8. PubMed ID: 19637879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Fluorescence spectroscopy study on photobleaching properties of photosensitizers in photodynamic therapy].
    Wang L; Gu Y; Li XS; Liu FG; Yu CQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Oct; 27(10):2073-8. PubMed ID: 18306799
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced Fluorescence Imaging and Photodynamic Cancer Therapy Using Hollow Mesoporous Nanocontainers.
    Hong SH; Kim H; Choi Y
    Chem Asian J; 2017 Jul; 12(14):1700-1703. PubMed ID: 28463441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Singlet oxygen generation using a porous monolithic polymer supported photosensitizer: potential application to the photodynamic destruction of melanoma cells.
    Burguete MI; Galindo F; Gavara R; Luis SV; Moreno M; Thomas P; Russell DA
    Photochem Photobiol Sci; 2009 Jan; 8(1):37-44. PubMed ID: 19247527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.