These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 21769483)

  • 1. Biotechnological uses of desiccation-tolerant microorganisms for the rhizoremediation of soils subjected to seasonal drought.
    Vilchez S; Manzanera M
    Appl Microbiol Biotechnol; 2011 Sep; 91(5):1297-304. PubMed ID: 21769483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New advances in plant growth-promoting rhizobacteria for bioremediation.
    Zhuang X; Chen J; Shim H; Bai Z
    Environ Int; 2007 Apr; 33(3):406-13. PubMed ID: 17275086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant-bacteria partnerships for the remediation of hydrocarbon contaminated soils.
    Khan S; Afzal M; Iqbal S; Khan QM
    Chemosphere; 2013 Jan; 90(4):1317-32. PubMed ID: 23058201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotechnological applications of serpentine soil bacteria for phytoremediation of trace metals.
    Rajkumar M; Vara Prasad MN; Freitas H; Ae N
    Crit Rev Biotechnol; 2009; 29(2):120-30. PubMed ID: 19514893
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microcosm study for revegetation of barren land with wild plants by some plant growth-promoting rhizobacteria.
    Ahn TS; Ka JO; Lee GH; Song HG
    J Microbiol Biotechnol; 2007 Jan; 17(1):52-7. PubMed ID: 18051353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Exopolysaccharides producing rhizobacteria and their role in plant growth and drought tolerance.
    Naseem H; Ahsan M; Shahid MA; Khan N
    J Basic Microbiol; 2018 Dec; 58(12):1009-1022. PubMed ID: 30183106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of free living plant growth-promoting rhizobacteria.
    Lucy M; Reed E; Glick BR
    Antonie Van Leeuwenhoek; 2004 Jul; 86(1):1-25. PubMed ID: 15103234
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils.
    Huang XD; El-Alawi Y; Penrose DM; Glick BR; Greenberg BM
    Environ Pollut; 2004 Aug; 130(3):465-76. PubMed ID: 15182977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhizosphere bacteria help plants tolerate abiotic stress.
    Yang J; Kloepper JW; Ryu CM
    Trends Plant Sci; 2009 Jan; 14(1):1-4. PubMed ID: 19056309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selection of bacteria and plant seeds for potential use in the remediation of diesel contaminated soils.
    Al-Ghazawi Z; Saadoun I; Al-Shak'ah A
    J Basic Microbiol; 2005; 45(4):251-6. PubMed ID: 16028197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metallomics: lessons for metalliferous soil remediation.
    Haferburg G; Kothe E
    Appl Microbiol Biotechnol; 2010 Jul; 87(4):1271-80. PubMed ID: 20532755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of bioaugmentation-assisted phytoextraction applied to metal contaminated soils: a review.
    Lebeau T; Braud A; Jézéquel K
    Environ Pollut; 2008 Jun; 153(3):497-522. PubMed ID: 17981382
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture.
    Gouda S; Kerry RG; Das G; Paramithiotis S; Shin HS; Patra JK
    Microbiol Res; 2018 Jan; 206():131-140. PubMed ID: 29146250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhizoremediation: a beneficial plant-microbe interaction.
    Kuiper I; Lagendijk EL; Bloemberg GV; Lugtenberg BJ
    Mol Plant Microbe Interact; 2004 Jan; 17(1):6-15. PubMed ID: 14714863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plant-rhizobacteria interactions alleviate abiotic stress conditions.
    Dimkpa C; Weinand T; Asch F
    Plant Cell Environ; 2009 Dec; 32(12):1682-94. PubMed ID: 19671096
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds.
    Mrozik A; Piotrowska-Seget Z
    Microbiol Res; 2010 Jul; 165(5):363-75. PubMed ID: 19735995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of microbes in the rhizosphere of selected trees for the rhizoremediation of hydrocarbon-contaminated soils.
    Yateem A; Al-Sharrah T; Bin-Haji A
    Int J Phytoremediation; 2008; 10():311-24. PubMed ID: 19260216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review.
    Dos Santos JJ; Maranho LT
    J Environ Manage; 2018 Mar; 210():104-113. PubMed ID: 29331851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic effects of Arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria in bioremediation of iron contaminated soils.
    Mishra V; Gupta A; Kaur P; Singh S; Singh N; Gehlot P; Singh J
    Int J Phytoremediation; 2016; 18(7):697-703. PubMed ID: 26682583
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation.
    Stroud JL; Paton GI; Semple KT
    J Appl Microbiol; 2007 May; 102(5):1239-53. PubMed ID: 17448159
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.