These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 21769947)

  • 1. Computational studies on the conformations of some large-ring cyclodextrins (CDn, n = 20, 21, 22, 23).
    Ivanov PM
    Chirality; 2011 Sep; 23(8):628-37. PubMed ID: 21769947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformations of some large-ring cyclodextrins derived from conformational search with molecular dynamics simulations and principal component analysis.
    Ivanov PM
    J Phys Chem B; 2010 Mar; 114(8):2650-9. PubMed ID: 20141116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics of large-ring cyclodextrins: principal component analysis of the conformational interconversions.
    Gotsev MG; Ivanov PM
    J Phys Chem B; 2009 Apr; 113(17):5752-9. PubMed ID: 19344106
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational study on the intramolecular self-organization of the macrorings of some 'giant' cyclodextrins (CD(n), n = 40, 70, 85, 100).
    Ivanov PM; Atanassov EJ; Jaime C
    Org Biomol Chem; 2015 Feb; 13(6):1680-9. PubMed ID: 25465648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics study of the conformational dynamics and energetics of some large-ring cyclodextrins (CDn, n = 24, 25, 26, 27, 28, 29).
    Gotsev MG; Ivanov PM; Jaime C
    Chirality; 2007 Mar; 19(3):203-13. PubMed ID: 17226747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the Structure of Large-Ring Cyclodextrins through Molecular Dynamics Simulations in Solution.
    Ivanov PM; Jaime C
    J Phys Chem B; 2004 May; 108(20):6261-74. PubMed ID: 18950110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How many atoms are required to characterize accurately trajectory fluctuations of a protein?
    Cukier RI
    J Chem Phys; 2010 Jun; 132(24):245101. PubMed ID: 20590215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apo adenylate kinase encodes its holo form: a principal component and varimax analysis.
    Cukier RI
    J Phys Chem B; 2009 Feb; 113(6):1662-72. PubMed ID: 19159290
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principal component and normal mode analysis of proteins; a quantitative comparison using the GroEL subunit.
    Skjaerven L; Martinez A; Reuter N
    Proteins; 2011 Jan; 79(1):232-43. PubMed ID: 21058295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-energy landscape, principal component analysis, and structural clustering to identify representative conformations from molecular dynamics simulations: the myoglobin case.
    Papaleo E; Mereghetti P; Fantucci P; Grandori R; De Gioia L
    J Mol Graph Model; 2009; 27(8):889-99. PubMed ID: 19264523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational states and folding pathways of peptides revealed by principal-independent component analyses.
    Nguyen PH
    Proteins; 2007 May; 67(3):579-92. PubMed ID: 17348012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can principal components yield a dimension reduced description of protein dynamics on long time scales?
    Lange OF; Grubmüller H
    J Phys Chem B; 2006 Nov; 110(45):22842-52. PubMed ID: 17092036
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics simulations and elastic network analysis of protein kinase B (Akt/PKB) inactivation.
    Cheng S; Niv MY
    J Chem Inf Model; 2010 Sep; 50(9):1602-10. PubMed ID: 20735046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulations of peptides and proteins with a continuum electrostatic model based on screened Coulomb potentials.
    Hassan SA; Mehler EL; Zhang D; Weinstein H
    Proteins; 2003 Apr; 51(1):109-25. PubMed ID: 12596268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Collective Langevin dynamics of conformational motions in proteins.
    Lange OF; Grubmüller H
    J Chem Phys; 2006 Jun; 124(21):214903. PubMed ID: 16774438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein dynamics from X-ray crystallography: anisotropic, global motion in diffuse scattering patterns.
    Meinhold L; Smith JC
    Proteins; 2007 Mar; 66(4):941-53. PubMed ID: 17154425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational interconversion in compstatin probed with molecular dynamics simulations.
    Mallik B; Lambris JD; Morikis D
    Proteins; 2003 Oct; 53(1):130-41. PubMed ID: 12945056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential dynamics of reversible peptide folding: memory-free conformational dynamics governed by internal hydrogen bonds.
    de Groot BL; Daura X; Mark AE; Grubmüller H
    J Mol Biol; 2001 May; 309(1):299-313. PubMed ID: 11491298
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HIV-1 TAR RNA spontaneously undergoes relevant apo-to-holo conformational transitions in molecular dynamics and constrained geometrical simulations.
    Fulle S; Christ NA; Kestner E; Gohlke H
    J Chem Inf Model; 2010 Aug; 50(8):1489-501. PubMed ID: 20726603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validating a strategy for molecular dynamics simulations of cyclodextrin inclusion complexes through single-crystal X-ray and NMR experimental data: a case study.
    Raffaini G; Ganazzoli F; Malpezzi L; Fuganti C; Fronza G; Panzeri W; Mele A
    J Phys Chem B; 2009 Jul; 113(27):9110-22. PubMed ID: 19526998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.