These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 21770144)

  • 1. Pt-CeO2 coating of carbon nanotubes grown on anode gas diffusion layer of the polymer electrolyte membrane fuel cell.
    Fiala R; Khalakhan I; Matolínová I; Václavů M; Vorokhta M; Sofer Z; Huber S; Potin V; Matolín V
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5062-7. PubMed ID: 21770144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Platinum-doped CeO2 thin film catalysts prepared by magnetron sputtering.
    Matolín V; Matolínová I; Václavů M; Khalakhan I; Vorokhta M; Fiala R; Pis I; Sofer Z; Poltierová-Vejpravová J; Mori T; Potin V; Yoshikawa H; Ueda S; Kobayashi K
    Langmuir; 2010 Aug; 26(15):12824-31. PubMed ID: 20608706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Pd/C-CeO2 Anode Catalyst for High-Performance Platinum-Free Anion Exchange Membrane Fuel Cells.
    Miller HA; Lavacchi A; Vizza F; Marelli M; Di Benedetto F; D'Acapito F; Paska Y; Page M; Dekel DR
    Angew Chem Int Ed Engl; 2016 May; 55(20):6004-7. PubMed ID: 27062251
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-performance Ni-CeO
    Sasaki K; Takahashi I; Kuramoto K; Shin-Mura K
    R Soc Open Sci; 2022 Jul; 9(7):220227. PubMed ID: 35875470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical deposition of three-dimensional platinum nanoflowers for high-performance polymer electrolyte fuel cells.
    Dhanasekaran P; Lokesh K; Ojha PK; Sahu AK; Bhat SD; Kalpana D
    J Colloid Interface Sci; 2020 Jul; 572():198-206. PubMed ID: 32244080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low loaded Pt-Co catalyst surfaces optimized by magnetron sputtering sequential deposition technique for PEM fuel cell applications: physical and electrochemical analysis on carbon paper support.
    Öztürk O; Haşimoğlu A; Özdemir OK; Karaaslan İ; Ahsen AŞ
    Turk J Chem; 2021; 45(5):1336-1352. PubMed ID: 34849052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical vapor deposited carbon nanotubes for aqueous H2-Cl2 fuel cells.
    Suryavanshi UB; Bhosale CH
    J Nanosci Nanotechnol; 2010 Jun; 10(6):4007-14. PubMed ID: 20355406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells.
    Li W; Wang X; Chen Z; Waje M; Yan Y
    J Phys Chem B; 2006 Aug; 110(31):15353-8. PubMed ID: 16884255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable pt nanoparticle deposition on carbon nanotubes as an anode catalyst for direct methanol fuel cells.
    Mu Y; Liang H; Hu J; Jiang L; Wan L
    J Phys Chem B; 2005 Dec; 109(47):22212-6. PubMed ID: 16853891
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Situ-Grown Ultrathin Catalyst Layers for Improving both Proton Exchange Membrane Fuel Cell and Anion Exchange Membrane Fuel Cell Performances.
    Xin D; Liu X; Chen B; Jin X; Hao J; Wang Y; Hu R; Fu J; Wang S; Zhu W; Zhuang Z
    ACS Appl Mater Interfaces; 2024 Aug; 16(32):42363-42371. PubMed ID: 39078706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deposition of platinum nanoparticles on organic functionalized carbon nanotubes grown in situ on carbon paper for fuel cells.
    Waje MM; Wang X; Li W; Yan Y
    Nanotechnology; 2005 Jul; 16(7):S395-400. PubMed ID: 21727458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CeO2 nanocubes-graphene oxide as durable and highly active catalyst support for proton exchange membrane fuel cell.
    Lei M; Wang ZB; Li JS; Tang HL; Liu WJ; Wang YG
    Sci Rep; 2014 Dec; 4():7415. PubMed ID: 25491655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells.
    Girishkumar G; Rettker M; Underhile R; Binz D; Vinodgopal K; McGinn P; Kamat P
    Langmuir; 2005 Aug; 21(18):8487-94. PubMed ID: 16114961
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective NiMn Nanoparticles-Functionalized Carbon Felt as an Effective Anode for Direct Urea Fuel Cells.
    Barakat NAM; Alajami M; Ghouri ZK; Al-Meer S
    Nanomaterials (Basel); 2018 May; 8(5):. PubMed ID: 29772710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High Performance Palladium Supported on Nanoporous Carbon under Anhydrous Condition.
    Yang Z; Ling Y; Zhang Y; Xu G
    Sci Rep; 2016 Nov; 6():36521. PubMed ID: 27811971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotubes as electronic interconnects in solid acid fuel cell electrodes.
    Varga Á; Pfohl M; Brunelli NA; Schreier M; Giapis KP; Haile SM
    Phys Chem Chem Phys; 2013 Oct; 15(37):15470-6. PubMed ID: 23942778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon-Nanowall Microporous Layers for Proton Exchange Membrane Fuel Cell.
    Balan AE; Bita BI; Vizireanu S; Dinescu G; Stamatin I; Trefilov AMI
    Membranes (Basel); 2022 Oct; 12(11):. PubMed ID: 36363619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of Porous Metal-Based 3D-Printed Anode GDLs for Tubular High Temperature Proton Exchange Membrane Fuel Cells.
    Bermúdez Agudelo MC; Hampe M; Reiber T; Abele E
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling.
    Yasuda K; Taniguchi A; Akita T; Ioroi T; Siroma Z
    Phys Chem Chem Phys; 2006 Feb; 8(6):746-52. PubMed ID: 16482315
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A highly durable fuel cell electrocatalyst based on double-polymer-coated carbon nanotubes.
    Berber MR; Hafez IH; Fujigaya T; Nakashima N
    Sci Rep; 2015 Nov; 5():16711. PubMed ID: 26594045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.