These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21770195)

  • 1. LiAlO2-LiNaCO3 composite electrolyte for solid oxide fuel cells.
    Raza R; Gao Z; Singh T; Singh G; Li S; Zhu B
    J Nanosci Nanotechnol; 2011 Jun; 11(6):5402-7. PubMed ID: 21770195
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High ionic conductivity in a LiFeO2-LiAlO2 composite under H2/air fuel cell conditions.
    Lan R; Tao S
    Chemistry; 2015 Jan; 21(3):1350-8. PubMed ID: 25394201
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanocomposites for advanced fuel cell technology.
    Zhu B
    J Nanosci Nanotechnol; 2011 Oct; 11(10):8873-9. PubMed ID: 22400274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring the Cathode-Electrolyte Interface with Nanoparticles for Boosting the Solid Oxide Fuel Cell Performance of Chemically Stable Proton-Conducting Electrolytes.
    Bi L; Shafi SP; Da'as EH; Traversa E
    Small; 2018 Aug; 14(32):e1801231. PubMed ID: 29931743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-linked solid-liquid interfaces enable a fast proton transport in the aluminate heterostructure electrolyte.
    Huang L; Zhao S; Huang C; Lin WF; Wu Y
    J Colloid Interface Sci; 2023 Sep; 645():823-832. PubMed ID: 37172492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enriching Nano-Heterointerfaces in Proton Conducting TiO
    Du M; Ji S; Zhang P; Tang Y; Liu Y
    Adv Sci (Weinh); 2024 Jun; ():e2401008. PubMed ID: 38867389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Proton Transport of β″-Al
    Huang C; Huang L; Lin WF; Wu Y
    ACS Appl Mater Interfaces; 2023 Aug; 15(32):38965-38974. PubMed ID: 37534730
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.
    Fan L; Wang C; Di J; Chen M; Zheng J; Zhu B
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4941-5. PubMed ID: 22905555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Next-Generation Electrochemical Energy Materials for Intermediate Temperature Molten Oxide Fuel Cells and Ion Transport Molten Oxide Membranes.
    Belousov VV
    Acc Chem Res; 2017 Feb; 50(2):273-280. PubMed ID: 28186402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advanced Fuel Cell Based on New Nanocrystalline Structure Gd
    Chen G; Sun W; Luo Y; He Y; Zhang X; Zhu B; Li W; Liu X; Ding Y; Li Y; Geng S; Yu K
    ACS Appl Mater Interfaces; 2019 Mar; 11(11):10642-10650. PubMed ID: 30794370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Designing fast oxide-ion conductors based on La2Mo2O9.
    Lacorre P; Goutenoire F; Bohnke O; Retoux R; Laligant Y
    Nature; 2000 Apr; 404(6780):856-8. PubMed ID: 10786788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mobile Ions in Composite Solids.
    Zou Z; Li Y; Lu Z; Wang D; Cui Y; Guo B; Li Y; Liang X; Feng J; Li H; Nan CW; Armand M; Chen L; Xu K; Shi S
    Chem Rev; 2020 May; 120(9):4169-4221. PubMed ID: 32267697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Progress in Semiconductor-Ionic Conductor Nanomaterial as a Membrane for Low-Temperature Solid Oxide Fuel Cells.
    Lu Y; Mi Y; Li J; Qi F; Yan S; Dong W
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improved Lithium Ionic Conductivity in Composite Polymer Electrolytes with Oxide-Ion Conducting Nanowires.
    Liu W; Lin D; Sun J; Zhou G; Cui Y
    ACS Nano; 2016 Dec; 10(12):11407-11413. PubMed ID: 28024352
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features.
    Malavasi L; Fisher CA; Islam MS
    Chem Soc Rev; 2010 Nov; 39(11):4370-87. PubMed ID: 20848015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An Interface Heterostructure of NiO and CeO
    Li J; Xie J; Li D; Yu L; Xu C; Yan S; Lu Y
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards the next generation of solid oxide fuel cells operating below 600 °c with chemically stable proton-conducting electrolytes.
    Fabbri E; Bi L; Pergolesi D; Traversa E
    Adv Mater; 2012 Jan; 24(2):195-208. PubMed ID: 21953861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancement toward Polymer Electrolyte Membrane Fuel Cells at Elevated Temperatures.
    Zhang J; Aili D; Lu S; Li Q; Jiang SP
    Research (Wash D C); 2020; 2020():9089405. PubMed ID: 32566932
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid state ionics: a Japan perspective.
    Yamamoto O
    Sci Technol Adv Mater; 2017; 18(1):504-527. PubMed ID: 28804526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.