These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 21770195)

  • 21. Oxygen transport in perovskite-type solid oxide fuel cell materials: insights from quantum mechanics.
    Muñoz-García AB; Ritzmann AM; Pavone M; Keith JA; Carter EA
    Acc Chem Res; 2014 Nov; 47(11):3340-8. PubMed ID: 24972154
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Classification of Solid Oxide Fuel Cells.
    Kuterbekov KA; Nikonov AV; Bekmyrza KZ; Pavzderin NB; Kabyshev AM; Kubenova MM; Kabdrakhimova GD; Aidarbekov N
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407176
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lithium Ion Pathway within Li7 La3 Zr2 O12 -Polyethylene Oxide Composite Electrolytes.
    Zheng J; Tang M; Hu YY
    Angew Chem Int Ed Engl; 2016 Sep; 55(40):12538-42. PubMed ID: 27611222
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Superionic Conductivity of Sm
    Liu Y; Fan L; Cai Y; Zhang W; Wang B; Zhu B
    ACS Appl Mater Interfaces; 2017 Jul; 9(28):23614-23623. PubMed ID: 28650612
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrochemical Approach for Analyzing Electrolyte Transport Properties and Their Effect on Protonic Ceramic Fuel Cell Performance.
    Danilov N; Lyagaeva J; Vdovin G; Medvedev D; Demin A; Tsiakaras P
    ACS Appl Mater Interfaces; 2017 Aug; 9(32):26874-26884. PubMed ID: 28763200
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Remarkable Ionic Conductivity in a LZO-SDC Composite for Low-Temperature Solid Oxide Fuel Cells.
    Tu Z; Tian Y; Liu M; Jin B; Akbar M; Mushtaq N; Wang X; Dong W; Wang B; Xia C
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Natural Mineral-Based Solid Oxide Fuel Cell with Heterogeneous Nanocomposite Derived from Hematite and Rare-Earth Minerals.
    Xia C; Cai Y; Ma Y; Wang B; Zhang W; Karlsson M; Wu Y; Zhu B
    ACS Appl Mater Interfaces; 2016 Aug; 8(32):20748-55. PubMed ID: 27483426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of apatite-type oxide ion conductors.
    Slater PR; Sansom JE; Tolchard JR
    Chem Rec; 2004; 4(6):373-84. PubMed ID: 15739199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Location of deuterium sites at operating temperature from neutron diffraction of BaIn0.6Ti0.2Yb0.2O2.6-n(OH)2n, an electrolyte for proton-solid oxide fuel cells.
    Jarry A; Joubert O; Suard E; Zanotti JM; Quarez E
    Phys Chem Chem Phys; 2016 Jun; 18(23):15751-9. PubMed ID: 27225228
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lattice strain effects on doping, hydration and proton transport in scheelite-type electrolytes for solid oxide fuel cells.
    Ferrara C; Eames C; Islam MS; Tealdi C
    Phys Chem Chem Phys; 2016 Oct; 18(42):29330-29336. PubMed ID: 27734041
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Oxide-Based Composite Electrolytes Using Na
    Noi K; Nagata Y; Hakari T; Suzuki K; Yubuchi S; Ito Y; Sakuda A; Hayashi A; Tatsumisago M
    ACS Appl Mater Interfaces; 2018 Jun; 10(23):19605-19614. PubMed ID: 29775274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ion-Conductive Properties of a Polymer Electrolyte Based on Ethylene Carbonate/Ethylene Oxide Random Copolymer.
    Morioka T; Nakano K; Tominaga Y
    Macromol Rapid Commun; 2017 Apr; 38(8):. PubMed ID: 28221711
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tailoring disorder and dimensionality: strategies for improved solid oxide fuel cell electrolytes.
    Garcia-Barriocanal J; Rivera-Calzada A; Varela M; Sefrioui Z; Díaz-Guillén MR; Moreno KJ; Díaz-Guillén JA; Iborra E; Fuentes AF; Pennycook SJ; Leon C; Santamaria J
    Chemphyschem; 2009 May; 10(7):1003-11. PubMed ID: 19330781
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Composite Electrolyte for All-Solid-State Lithium Batteries: Low-Temperature Fabrication and Conductivity Enhancement.
    Lee SD; Jung KN; Kim H; Shin HS; Song SW; Park MS; Lee JW
    ChemSusChem; 2017 May; 10(10):2175-2181. PubMed ID: 28317277
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zirconia- and ceria-based electrolytes for fuel cell applications: critical advancements toward sustainable and clean energy production.
    Maiti TK; Majhi J; Maiti SK; Singh J; Dixit P; Rohilla T; Ghosh S; Bhushan S; Chattopadhyay S
    Environ Sci Pollut Res Int; 2022 Sep; 29(43):64489-64512. PubMed ID: 35864400
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermally Stable Super Ionic Conductor from Carbon Sphere Oxide.
    Islam MS; Karim MR; Hatakeyama K; Takehira H; Ohtani R; Nakamura M; Koinuma M; Hayami S
    Chem Asian J; 2016 Aug; 11(16):2322-7. PubMed ID: 27411089
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triple-conducting layered perovskites as cathode materials for proton-conducting solid oxide fuel cells.
    Kim J; Sengodan S; Kwon G; Ding D; Shin J; Liu M; Kim G
    ChemSusChem; 2014 Oct; 7(10):2811-5. PubMed ID: 25146887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Garnet-Type Fast Li-Ion Conductors with High Ionic Conductivities for All-Solid-State Batteries.
    Wu JF; Pang WK; Peterson VK; Wei L; Guo X
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12461-12468. PubMed ID: 28332828
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A New Class of Proton Conductors with Dramatically Enhanced Stability and High Conductivity for Reversible Solid Oxide Cells.
    Luo Z; Zhou Y; Hu X; Wang W; Ding Y; Zhang W; Li T; Kane N; Liu Z; Liu M
    Small; 2023 Apr; 19(17):e2208064. PubMed ID: 36703520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A review on phosphate based, solid state, protonic conductors for intermediate temperature fuel cells.
    Paschos O; Kunze J; Stimming U; Maglia F
    J Phys Condens Matter; 2011 Jun; 23(23):234110. PubMed ID: 21613707
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.