These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 21770469)

  • 1. Kinetics and mechanisms of nanosilver oxysulfidation.
    Liu J; Pennell KG; Hurt RH
    Environ Sci Technol; 2011 Sep; 45(17):7345-53. PubMed ID: 21770469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion release kinetics and particle persistence in aqueous nano-silver colloids.
    Liu J; Hurt RH
    Environ Sci Technol; 2010 Mar; 44(6):2169-75. PubMed ID: 20175529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transformations of citrate and Tween coated silver nanoparticles reacted with Na₂S.
    Baalousha M; Arkill KP; Romer I; Palmer RE; Lead JR
    Sci Total Environ; 2015 Jan; 502():344-53. PubMed ID: 25262296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemistry. Nanosilver revisited downstream.
    Nowack B
    Science; 2010 Nov; 330(6007):1054-5. PubMed ID: 21097924
    [No Abstract]   [Full Text] [Related]  

  • 5. Enhanced Ag(+) Ion Release from Aqueous Nanosilver Suspensions by Absorption of Ambient CO2.
    Fujiwara K; Sotiriou GA; Pratsinis SE
    Langmuir; 2015 May; 31(19):5284-90. PubMed ID: 25923906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Insights into the Stability of Silver Sulfide Nanoparticles in Surface Water: Dissolution through Hypochlorite Oxidation.
    Li L; Xu Z; Wimmer A; Tian Q; Wang X
    Environ Sci Technol; 2017 Jul; 51(14):7920-7927. PubMed ID: 28608678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sulfidation kinetics of silver nanoparticles reacted with metal sulfides.
    Thalmann B; Voegelin A; Sinnet B; Morgenroth E; Kaegi R
    Environ Sci Technol; 2014 May; 48(9):4885-92. PubMed ID: 24678586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stability of single dispersed silver nanoparticles in natural and synthetic freshwaters: Effects of dissolved oxygen.
    Zou X; Li P; Lou J; Fu X; Zhang H
    Environ Pollut; 2017 Nov; 230():674-682. PubMed ID: 28715772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled release of biologically active silver from nanosilver surfaces.
    Liu J; Sonshine DA; Shervani S; Hurt RH
    ACS Nano; 2010 Nov; 4(11):6903-13. PubMed ID: 20968290
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver nanoparticles in aquatic environments: Physiochemical behavior and antimicrobial mechanisms.
    Zhang C; Hu Z; Deng B
    Water Res; 2016 Jan; 88():403-427. PubMed ID: 26519626
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Impacts of Morphology, Natural Organic Matter, Cations, and Ionic Strength on Sulfidation of Silver Nanowires.
    Zhang Y; Xia J; Liu Y; Qiang L; Zhu L
    Environ Sci Technol; 2016 Dec; 50(24):13283-13290. PubMed ID: 27993058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Re-evaluation of stability and toxicity of silver sulfide nanoparticle in environmental water: Oxidative dissolution by manganese oxide.
    Shi E; Xu Z; Zhang X; Yang X; Liu Q; Zhang H; Wimmer A; Li L
    Environ Pollut; 2018 Dec; 243(Pt B):1242-1251. PubMed ID: 30267921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative dissolution of silver nanoparticles by biologically relevant oxidants: a kinetic and mechanistic study.
    Ho CM; Yau SK; Lok CN; So MH; Che CM
    Chem Asian J; 2010 Feb; 5(2):285-93. PubMed ID: 20063340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.
    Levard C; Reinsch BC; Michel FM; Oumahi C; Lowry GV; Brown GE
    Environ Sci Technol; 2011 Jun; 45(12):5260-6. PubMed ID: 21598969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrification inhibition by silver nanoparticles.
    Choi OK; Hu ZQ
    Water Sci Technol; 2009; 59(9):1699-702. PubMed ID: 19448303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag(0) and reduction of Ag(+).
    Yu SJ; Yin YG; Chao JB; Shen MH; Liu JF
    Environ Sci Technol; 2014; 48(1):403-11. PubMed ID: 24328224
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative dissolution of silver nanoparticles by dioxygen: a kinetic and mechanistic study.
    Ho CM; Wong CK; Yau SK; Lok CN; Che CM
    Chem Asian J; 2011 Sep; 6(9):2506-11. PubMed ID: 21608134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the origin of released Ag+ ions from nanosilver.
    Sotiriou GA; Meyer A; Knijnenburg JT; Panke S; Pratsinis SE
    Langmuir; 2012 Nov; 28(45):15929-36. PubMed ID: 23072572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Ag(2) S-Ag nanoprisms and their use as DNA hybridization probes.
    Liu B; Ma Z
    Small; 2011 Jun; 7(11):1587-92. PubMed ID: 21538868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A direct comparison of nanosilver particles and nanosilver plates for the oxidation of ascorbic acid.
    Sadeghi B; Meskinfam M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():326-8. PubMed ID: 22785122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.