These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
179 related articles for article (PubMed ID: 21770469)
21. Chemical transformations of nanosilver in biological environments. Liu J; Wang Z; Liu FD; Kane AB; Hurt RH ACS Nano; 2012 Nov; 6(11):9887-99. PubMed ID: 23046098 [TBL] [Abstract][Full Text] [Related]
22. Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape. Zeng J; Tao J; Su D; Zhu Y; Qin D; Xia Y Nano Lett; 2011 Jul; 11(7):3010-5. PubMed ID: 21688839 [TBL] [Abstract][Full Text] [Related]
23. Rethinking Stability of Silver Sulfide Nanoparticles (Ag2S-NPs) in the Aquatic Environment: Photoinduced Transformation of Ag2S-NPs in the Presence of Fe(III). Li L; Wang Y; Liu Q; Jiang G Environ Sci Technol; 2016 Jan; 50(1):188-96. PubMed ID: 26606372 [TBL] [Abstract][Full Text] [Related]
24. Effect of different water conditions on dissolution of nanosilver. Chen SF; Zhang H; Lin QY Water Sci Technol; 2013; 68(8):1745-50. PubMed ID: 24185055 [TBL] [Abstract][Full Text] [Related]
25. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes. Peretyazhko TS; Zhang Q; Colvin VL Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014 [TBL] [Abstract][Full Text] [Related]
26. General synthesis of uniform metal sulfide colloidal particles via autocatalytic surface growth: a self-correcting system. Li XH; Li HB; Li GD; Chen JS Inorg Chem; 2009 Apr; 48(7):3132-8. PubMed ID: 19275218 [TBL] [Abstract][Full Text] [Related]
27. Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants. Rasheed T; Bilal M; Li C; Nabeel F; Khalid M; Iqbal HMN J Photochem Photobiol B; 2018 Apr; 181():44-52. PubMed ID: 29499463 [TBL] [Abstract][Full Text] [Related]
28. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Fernando I; Zhou Y Chemosphere; 2019 Feb; 216():297-305. PubMed ID: 30384298 [TBL] [Abstract][Full Text] [Related]
29. Sunlight-driven reduction of silver ions by natural organic matter: formation and transformation of silver nanoparticles. Hou WC; Stuart B; Howes R; Zepp RG Environ Sci Technol; 2013 Jul; 47(14):7713-21. PubMed ID: 23731169 [TBL] [Abstract][Full Text] [Related]
30. ISD3: a particokinetic model for predicting the combined effects of particle sedimentation, diffusion and dissolution on cellular dosimetry for in vitro systems. Thomas DG; Smith JN; Thrall BD; Baer DR; Jolley H; Munusamy P; Kodali V; Demokritou P; Cohen J; Teeguarden JG Part Fibre Toxicol; 2018 Jan; 15(1):6. PubMed ID: 29368623 [TBL] [Abstract][Full Text] [Related]
31. Convenient synthesis of silver nanowires with adjustable diameters via a solvothermal method. Chen D; Qiao X; Qiu X; Chen J; Jiang R J Colloid Interface Sci; 2010 Apr; 344(2):286-91. PubMed ID: 20102767 [TBL] [Abstract][Full Text] [Related]
32. Modeling nanosilver transformations in freshwater sediments. Dale AL; Lowry GV; Casman EA Environ Sci Technol; 2013 Nov; 47(22):12920-8. PubMed ID: 24147627 [TBL] [Abstract][Full Text] [Related]
33. Determination of nanosilver dissolution kinetics and toxicity in an environmentally relevant aqueous medium. Harmon AR; Kennedy AJ; Poda AR; Bednar AJ; Chappell MA; Steevens JA Environ Toxicol Chem; 2014 Aug; 33(8):1783-91. PubMed ID: 24753094 [TBL] [Abstract][Full Text] [Related]
34. Effects of humic substances on precipitation and aggregation of zinc sulfide nanoparticles. Deonarine A; Lau BL; Aiken GR; Ryan JN; Hsu-Kim H Environ Sci Technol; 2011 Apr; 45(8):3217-23. PubMed ID: 21291228 [TBL] [Abstract][Full Text] [Related]
35. Hollow AgI:Ag nanoframes as solar photocatalysts for hydrogen generation from water reduction. An C; Wang J; Liu J; Wang S; Sun Y ChemSusChem; 2013 Oct; 6(10):1931-7. PubMed ID: 24105996 [TBL] [Abstract][Full Text] [Related]
36. Toxicity of silver nanoparticles and ionic silver: Comparison of adverse effects and potential toxicity mechanisms in the freshwater clam Sphaerium corneum. Völker C; Kämpken I; Boedicker C; Oehlmann J; Oetken M Nanotoxicology; 2015; 9(6):677-85. PubMed ID: 25268182 [TBL] [Abstract][Full Text] [Related]
37. DNA-modulated photo-transformation of AgCl to silver nanoparticles: visiting the formation mechanism. Wang G; Mitomo H; Matsuo Y; Niikura K; Maeda M; Ijiro K J Colloid Interface Sci; 2015 Aug; 452():224-234. PubMed ID: 25957236 [TBL] [Abstract][Full Text] [Related]
38. The release of nanosilver from consumer products used in the home. Benn T; Cavanagh B; Hristovski K; Posner JD; Westerhoff P J Environ Qual; 2010; 39(6):1875-82. PubMed ID: 21284285 [TBL] [Abstract][Full Text] [Related]
39. Silver nanoparticles coated with natural polysaccharides as models to study AgNP aggregation kinetics using UV-Visible spectrophotometry upon discharge in complex environments. Lodeiro P; Achterberg EP; Pampín J; Affatati A; El-Shahawi MS Sci Total Environ; 2016 Jan; 539():7-16. PubMed ID: 26363390 [TBL] [Abstract][Full Text] [Related]
40. Green and simple synthesis route of Ag@AgCl nanomaterial using green marine crude extract and its application for sensitive and selective determination of mercury. Karimi S; Samimi T Spectrochim Acta A Mol Biomol Spectrosc; 2019 Nov; 222():117216. PubMed ID: 31176158 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]