These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 21770559)

  • 1. Extended coherence time on the clock transition of optically trapped rubidium.
    Büning GK; Will J; Ertmer W; Rasel E; Arlt J; Klempt C; Ramirez-Martinez F; Piéchon F; Rosenbusch P
    Phys Rev Lett; 2011 Jun; 106(24):240801. PubMed ID: 21770559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spin waves and collisional frequency shifts of a trapped-atom clock.
    Maineult W; Deutsch C; Gibble K; Reichel J; Rosenbusch P
    Phys Rev Lett; 2012 Jul; 109(2):020407. PubMed ID: 23030137
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of the Spin-Dipolar Part of the Tensor Polarizability of ^{87}Rb.
    Dallal Y; Ozeri R
    Phys Rev Lett; 2015 Oct; 115(18):183001. PubMed ID: 26565464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A contradictory phenomenon of deshelving pulses in a dilute medium used for lengthened photon storage time.
    Ham BS
    Opt Express; 2010 Aug; 18(17):17749-55. PubMed ID: 20721162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collisional frequency shifts in 133Cs fountain clocks.
    Leo PJ; Julienne PS; Mies FH; Williams CJ
    Phys Rev Lett; 2001 Apr; 86(17):3743-6. PubMed ID: 11329313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential light-shift cancellation in a magnetic-field-insensitive transition of 87rb.
    Chicireanu R; Nelson KD; Olmschenk S; Lundblad N; Derevianko A; Porto JV
    Phys Rev Lett; 2011 Feb; 106(6):063002. PubMed ID: 21405465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and operation of a transportable
    Cheng HN; Zhang Z; Deng S; Ji JW; Ren W; Xiang JF; Zhao JB; Zhao X; Ye MF; Li L; Li T; Qu QZ; Chen W; Liu K; Dai S; Fang F; Li T; Liu L; Lü DS
    Rev Sci Instrum; 2021 May; 92(5):054702. PubMed ID: 34243348
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressing the dephasing of optically trapped atoms inside a hollow-core fiber.
    Song Y; Li W; Xu X; Han R; Gao C; Dai C; Song N
    Opt Lett; 2024 Jan; 49(2):206-209. PubMed ID: 38194529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loaded Microwave Cavity for Compact Vapor-Cell Clocks.
    Gozzelino M; Micalizio S; Calosso CE; Godone A; Lin H; Levi F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Mar; 68(3):872-879. PubMed ID: 32746219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary results of the trapped atom clock on a chip.
    Lacroute C; Reinhard F; Ramirez-Martinez F; Deutsch C; Schneider T; Reichel J; Rosenbusch P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jan; 57(1):106-110. PubMed ID: 20040433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compact high-performance continuous-wave double-resonance rubidium standard with 1.4 × 10(-13) τ(-1/2) stability.
    Bandi T; Affolderbach C; Stefanucci C; Merli F; Skrivervik AK; Mileti G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1769-78. PubMed ID: 25389156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Half-minute-scale atomic coherence and high relative stability in a tweezer clock.
    Young AW; Eckner WJ; Milner WR; Kedar D; Norcia MA; Oelker E; Schine N; Ye J; Kaufman AM
    Nature; 2020 Dec; 588(7838):408-413. PubMed ID: 33328666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Medium-long term frequency stability of pulsed vapor cell clocks.
    Micalizio S; Godone A; Levi F; Calosso C
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jul; 57(7):1524-34. PubMed ID: 20639147
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Space qualified microwave source for cold atom clock operating in orbit.
    Li T; Huang J; Qu Q; Wang B; Li L; Ren W; Shi W; Zhao JB; Zhao X; Ji JW; Ye MF; Yao YY; Lü D; Wang YZ; Chen WB; Liu L
    Rev Sci Instrum; 2018 Nov; 89(11):113115. PubMed ID: 30501336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical Stabilization of a Microwave Oscillator for Fountain Clock Interrogation.
    Lipphardt B; Gerginov V; Weyers S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Apr; 64(4):761-766. PubMed ID: 28103194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved tests of local position invariance using 87Rb and 133Cs fountains.
    Guéna J; Abgrall M; Rovera D; Rosenbusch P; Tobar ME; Laurent P; Clairon A; Bize S
    Phys Rev Lett; 2012 Aug; 109(8):080801. PubMed ID: 23002732
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulsed optically pumped atomic clock with zero-dead-time.
    Lin H; Lin J; Deng J; Zhang S; Wang Y
    Rev Sci Instrum; 2017 Dec; 88(12):123103. PubMed ID: 29289225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhomogeneous dephasing masks coherence lifetimes in ensemble measurements.
    Pelzer KM; Griffin GB; Gray SK; Engel GS
    J Chem Phys; 2012 Apr; 136(16):164508. PubMed ID: 22559497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved measurement of the hydrogen 1S-2S transition frequency.
    Parthey CG; Matveev A; Alnis J; Bernhardt B; Beyer A; Holzwarth R; Maistrou A; Pohl R; Predehl K; Udem T; Wilken T; Kolachevsky N; Abgrall M; Rovera D; Salomon C; Laurent P; Hänsch TW
    Phys Rev Lett; 2011 Nov; 107(20):203001. PubMed ID: 22181729
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.