BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 21770701)

  • 1. Stopping power for particle therapy: the generic library libdEdx and clinically relevant stopping-power ratios for light ions.
    Lühr A; Toftegaard J; Kantemiris I; Hansen DC; Bassler N
    Int J Radiat Biol; 2012 Jan; 88(1-2):209-12. PubMed ID: 21770701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical expressions for water-to-air stopping-power ratios relevant for accurate dosimetry in particle therapy.
    Lühr A; Hansen DC; Jäkel O; Sobolevsky N; Bassler N
    Phys Med Biol; 2011 Apr; 56(8):2515-33. PubMed ID: 21441652
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluence correction factors and stopping power ratios for clinical ion beams.
    Lühr A; Hansen DC; Sobolevsky N; Palmans H; Rossomme S; Bassler N
    Acta Oncol; 2011 Aug; 50(6):797-805. PubMed ID: 21767177
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calculation of stopping power ratios for carbon ion dosimetry.
    Geithner O; Andreo P; Sobolevsky N; Hartmann G; Jäkel O
    Phys Med Biol; 2006 May; 51(9):2279-92. PubMed ID: 16625042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Monte Carlo simulations on the water-to-air stopping power ratio for carbon ion dosimetry.
    Henkner K; Bassler N; Sobolevsky N; Jäkel O
    Med Phys; 2009 Apr; 36(4):1230-5. PubMed ID: 19472630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams.
    Andreo P
    Phys Med Biol; 2009 Jun; 54(11):N205-15. PubMed ID: 19436099
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Secondary particle production in tissue-like and shielding materials for light and heavy ions calculated with the Monte-Carlo code SHIELD-HIT.
    Gudowska I; Andreo P; Sobolevsky N
    J Radiat Res; 2002 Dec; 43 Suppl():S93-7. PubMed ID: 12793738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The impact of modeling nuclear fragmentation on delivered dose and radiobiology in ion therapy.
    Lühr A; Hansen DC; Teiwes R; Sobolevsky N; Jäkel O; Bassler N
    Phys Med Biol; 2012 Aug; 57(16):5169-85. PubMed ID: 22842768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A semi-analytical radiobiological model may assist treatment planning in light ion radiotherapy.
    Kundrát P
    Phys Med Biol; 2007 Dec; 52(23):6813-30. PubMed ID: 18029977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assigning nonelastic nuclear interaction cross sections to Hounsfield units for Monte Carlo treatment planning of proton beams.
    Palmans H; Verhaegen F
    Phys Med Biol; 2005 Mar; 50(5):991-1000. PubMed ID: 15798271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of water/air stopping-power ratios using EGS4 with explicit treatment of electron-positron differences.
    Malamut C; Rogers DW; Bielajew AF
    Med Phys; 1991; 18(6):1222-8. PubMed ID: 1753907
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Monte Carlo evaluation of carbon and lithium ions dose distributions in water.
    Taleei R; Hultqvist M; Gudowska I; Nikjoo H
    Int J Radiat Biol; 2012 Jan; 88(1-2):189-94. PubMed ID: 21929295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monte Carlo based water/medium stopping-power ratios for various ICRP and ICRU tissues.
    Fernández-Varea JM; Carrasco P; Panettieri V; Brualla L
    Phys Med Biol; 2007 Nov; 52(21):6475-83. PubMed ID: 17951856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton stopping powers in some low-Z elements.
    Sharada KS
    Radiat Res; 1993 Dec; 136(3):335-40. PubMed ID: 8278574
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dosimetric characteristics of electron beams produced by a mobile accelerator for IORT.
    Pimpinella M; Mihailescu D; Guerra AS; Laitano RF
    Phys Med Biol; 2007 Oct; 52(20):6197-214. PubMed ID: 17921580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent improvements in the SHIELD-HIT code.
    Hansen DC; Lühr A; Herrmann R; Sobolevsky N; Bassler N
    Int J Radiat Biol; 2012 Jan; 88(1-2):195-9. PubMed ID: 21819203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of systematic uncertainties in Monte Carlo-calculated beam quality correction factors.
    Wulff J; Heverhagen JT; Zink K; Kawrakow I
    Phys Med Biol; 2010 Aug; 55(16):4481-93. PubMed ID: 20668340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analytical theory for the fluence, planar fluence, energy fluence, planar energy fluence and absorbed dose of primary particles and their fragments in broad therapeutic light ion beams.
    Kempe J; Brahme A
    Phys Med; 2010 Jan; 26(1):6-16. PubMed ID: 19345598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-range relation and mean energy variation in therapeutic particle beams.
    Kempe J; Brahme A
    Med Phys; 2008 Jan; 35(1):159-70. PubMed ID: 18293572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo treatment planning for molecular targeted radiotherapy within the MINERVA system.
    Lehmann J; Hartmann Siantar C; Wessol DE; Wemple CA; Nigg D; Cogliati J; Daly T; Descalle MA; Flickinger T; Pletcher D; Denardo G
    Phys Med Biol; 2005 Mar; 50(5):947-58. PubMed ID: 15798267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.