These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 21770722)

  • 21. Characterizing exposures to airborne metals and nanoparticle emissions in a refinery.
    Miller A; Drake PL; Hintz P; Habjan M
    Ann Occup Hyg; 2010 Jul; 54(5):504-13. PubMed ID: 20403942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of a tractor cab using real-time aerosol counting instrumentation.
    Hall RM; Heitbrink WA; Reed LD
    Appl Occup Environ Hyg; 2002 Jan; 17(1):47-54. PubMed ID: 11800406
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanosized TiO₂ caused minor airflow limitation in the murine airways.
    Leppänen M; Korpi A; Miettinen M; Leskinen J; Torvela T; Rossi EM; Vanhala E; Wolff H; Alenius H; Kosma VM; Joutsensaari J; Jokiniemi J; Pasanen P
    Arch Toxicol; 2011 Jul; 85(7):827-39. PubMed ID: 21259060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Temporal evolution of nanoparticle aerosols in workplace exposure.
    Seipenbusch M; Binder A; Kasper G
    Ann Occup Hyg; 2008 Nov; 52(8):707-16. PubMed ID: 18927101
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Personal exposure to ultrafine particles in the workplace: exploring sampling techniques and strategies.
    Brouwer DH; Gijsbers JH; Lurvink MW
    Ann Occup Hyg; 2004 Jul; 48(5):439-53. PubMed ID: 15240340
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Exploration of CeO₂ nanoparticles as a chemi-sensor and photo-catalyst for environmental applications.
    Khan SB; Faisal M; Rahman MM; Jamal A
    Sci Total Environ; 2011 Jul; 409(15):2987-92. PubMed ID: 21570707
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Features of nano aerosols action and safety measures].
    Lutsenko LA; Rakitskiy VN; Il'nitskaya AV; Egorova AM; Gvozdeva LL
    Med Tr Prom Ekol; 2016; (3):6-11. PubMed ID: 27265937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The effects of engineered nanoparticles on survival, reproduction, and behaviour of freshwater snail, Physa acuta (Draparnaud, 1805).
    Musee N; Oberholster PJ; Sikhwivhilu L; Botha AM
    Chemosphere; 2010 Nov; 81(10):1196-203. PubMed ID: 20943245
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Relationships among particle number, surface area, and respirable mass concentrations in automotive engine manufacturing.
    Heitbrink WA; Evans DE; Ku BK; Maynard AD; Slavin TJ; Peters TM
    J Occup Environ Hyg; 2009 Jan; 6(1):19-31. PubMed ID: 18982535
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of leakage from a metal machining center using tracer gas methods: a case study.
    Heitbrink WA; Earnest GS; Mickelsen RL; Mead KR; D'Arcy JB
    Am Ind Hyg Assoc J; 1999; 60(6):785-8. PubMed ID: 10635544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fate of cerium dioxide (CeO2) nanoparticles in municipal wastewater during activated sludge treatment.
    Gómez-Rivera F; Field JA; Brown D; Sierra-Alvarez R
    Bioresour Technol; 2012 Mar; 108():300-4. PubMed ID: 22265985
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of environmental fate models for engineered nanoparticles--a case study of TiO2 nanoparticles in the Rhine River.
    Praetorius A; Scheringer M; Hungerbühler K
    Environ Sci Technol; 2012 Jun; 46(12):6705-13. PubMed ID: 22502632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Water-gas shift reaction on metal nanoclusters encapsulated in mesoporous ceria studied with ambient-pressure X-ray photoelectron spectroscopy.
    Wen C; Zhu Y; Ye Y; Zhang S; Cheng F; Liu Y; Wang P; Tao FF
    ACS Nano; 2012 Oct; 6(10):9305-13. PubMed ID: 22978416
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cellular responses induced by cerium oxide nanoparticles: induction of intracellular calcium level and oxidative stress on culture cells.
    Horie M; Nishio K; Kato H; Fujita K; Endoh S; Nakamura A; Miyauchi A; Kinugasa S; Yamamoto K; Niki E; Yoshida Y; Hagihara Y; Iwahashi H
    J Biochem; 2011 Oct; 150(4):461-71. PubMed ID: 21693544
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanoparticle penetration through filter media and leakage through face seal interface of N95 filtering facepiece respirators.
    Rengasamy S; Eimer BC
    Ann Occup Hyg; 2012 Jul; 56(5):568-80. PubMed ID: 22294504
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Airborne engineered nanoparticles: potential risks and monitoring challenges for assessing their impacts on children.
    Biskos G; Schmidt-Ott A
    Paediatr Respir Rev; 2012 Jun; 13(2):79-83. PubMed ID: 22475252
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Occupational exposure to nanoparticles. Assessment of workplace exposure].
    Bujak-Pietrek S
    Med Pr; 2010; 61(2):183-9. PubMed ID: 20509555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanoparticles-containing spray can aerosol: characterization, exposure assessment, and generator design.
    Chen BT; Afshari A; Stone S; Jackson M; Schwegler-Berry D; Frazer DG; Castranova V; Thomas TA
    Inhal Toxicol; 2010 Nov; 22(13):1072-82. PubMed ID: 20939689
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Fine, ultrafine and nano- particles in the living and working setting: potential health effects and measurement of inhalation exposure].
    Marconi A
    G Ital Med Lav Ergon; 2006; 28(3):258-65. PubMed ID: 17144413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.