These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
271 related articles for article (PubMed ID: 21771751)
21. The Effect of Arterial Curvature on Blood Flow in Arterio-Venous Fistulae: Realistic Geometries and Pulsatile Flow. Grechy L; Iori F; Corbett RW; Gedroyc W; Duncan N; Caro CG; Vincent PE Cardiovasc Eng Technol; 2017 Sep; 8(3):313-329. PubMed ID: 28748414 [TBL] [Abstract][Full Text] [Related]
22. Prediction of the anastomosis angle of arteriovenous fistula in hemodialysis to standardize the surgical technique. Shembekar SN; Zodpe DB; Padole PM Biomed Mater Eng; 2022; 33(5):423-436. PubMed ID: 35253728 [TBL] [Abstract][Full Text] [Related]
23. Steal phenomenon in radiocephalic arteriovenous fistula. In vitro haemodynamic and electrical resistance simulation studies. Ramuzat A; How TV; Bakran A Eur J Vasc Endovasc Surg; 2003 Mar; 25(3):246-53. PubMed ID: 12623337 [TBL] [Abstract][Full Text] [Related]
25. Venous stenosis in a pig arteriovenous fistula model--anatomy, mechanisms and cellular phenotypes. Wang Y; Krishnamoorthy M; Banerjee R; Zhang J; Rudich S; Holland C; Arend L; Roy-Chaudhury P Nephrol Dial Transplant; 2008 Feb; 23(2):525-33. PubMed ID: 18037619 [TBL] [Abstract][Full Text] [Related]
26. Transitional Flow in the Venous Side of Patient-Specific Arteriovenous Fistulae for Hemodialysis. Bozzetto M; Ene-Iordache B; Remuzzi A Ann Biomed Eng; 2016 Aug; 44(8):2388-2401. PubMed ID: 26698581 [TBL] [Abstract][Full Text] [Related]
27. Investigations into the relationship between hemodynamics and vascular alterations in an established arteriovenous fistula. Kharboutly Z; Fenech M; Treutenaere JM; Claude I; Legallais C Med Eng Phys; 2007 Nov; 29(9):999-1007. PubMed ID: 17137826 [TBL] [Abstract][Full Text] [Related]
28. [Distal vascular access for chronic hemodialysis in patients over 65 years of age. Surgical results]. Cante P; Bottet P; Ryckelynck JP; Le Roch B; Levaltier B; Lobbedez T; Bensadoun H Prog Urol; 1998 Feb; 8(1):83-8. PubMed ID: 9533157 [TBL] [Abstract][Full Text] [Related]
29. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses. Longest PW; Kleinstreuer C; Deanda A Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524 [TBL] [Abstract][Full Text] [Related]
30. Computational modeling of the cephalic arch predicts hemodynamic profiles in patients with brachiocephalic fistula access receiving hemodialysis. Hammes M; Moya-Rodriguez A; Bernstein C; Nathan S; Navuluri R; Basu A PLoS One; 2021; 16(7):e0254016. PubMed ID: 34260609 [TBL] [Abstract][Full Text] [Related]
31. Flow patterns in the radiocephalic arteriovenous fistula: an in vitro study. Sivanesan S; How TV; Black RA; Bakran A J Biomech; 1999 Sep; 32(9):915-25. PubMed ID: 10460128 [TBL] [Abstract][Full Text] [Related]
32. Analysis of Blood Flow Characteristics in a Model of a Mature Side-to-Side Arteriovenous Fistula. Javadzadegan A; Myo Lwin N; Asyraf M; Simmons A; Barber T Artif Organs; 2017 Nov; 41(11):E251-E262. PubMed ID: 28326557 [TBL] [Abstract][Full Text] [Related]
33. Computational Modelling Based Recommendation on Optimal Dialysis Needle Positioning and Dialysis Flow in Patients With Arteriovenous Grafts. Quicken S; Huberts W; Tordoir J; van Loon M; Delhaas T; Mees B Eur J Vasc Endovasc Surg; 2020 Feb; 59(2):288-294. PubMed ID: 31883684 [TBL] [Abstract][Full Text] [Related]
34. Particle image velocimetry measurements of three proximal anastomosis models under a pulsatile flow condition. Chua LP; Ji WF; Yu CM; Zhou TM; Tan YS Proc Inst Mech Eng H; 2008 Apr; 222(3):249-63. PubMed ID: 18491695 [TBL] [Abstract][Full Text] [Related]
35. Reduction in anastomotic flow disturbance within a modified end-to-side arteriovenous fistula configuration: Results of a computational flow dynamic model. Carroll J; Varcoe RL; Barber T; Simmons A Nephrology (Carlton); 2019 Feb; 24(2):245-251. PubMed ID: 29314372 [TBL] [Abstract][Full Text] [Related]
36. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. Lei M; Archie JP; Kleinstreuer C J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618 [TBL] [Abstract][Full Text] [Related]
37. Vascular dialysis access flow measurement: early intervention through early detection. Miguel SS; Chow J J Ren Care; 2009 Dec; 35(4):185-91. PubMed ID: 19909411 [TBL] [Abstract][Full Text] [Related]
38. Spiral Laminar Flow is Associated with a Reduction in Disturbed Shear in Patient-Specific Models of an Arteriovenous Fistula. Cunnane CV; Houston JG; Moran DT; Broderick SP; Ross RA; Walsh MT Cardiovasc Eng Technol; 2023 Feb; 14(1):152-165. PubMed ID: 36151366 [TBL] [Abstract][Full Text] [Related]
39. Sequential venous anastomosis design to enhance patency of arterio-venous grafts for hemodialysis. Kabinejadian F; Su B; Ghista DN; Ismail M; Kim S; Leo HL Comput Methods Biomech Biomed Engin; 2017 Jan; 20(1):85-93. PubMed ID: 27328413 [TBL] [Abstract][Full Text] [Related]
40. Novel paradigms for dialysis vascular access: upstream hemodynamics and vascular remodeling in dialysis access stenosis. Remuzzi A; Ene-Iordache B Clin J Am Soc Nephrol; 2013 Dec; 8(12):2186-93. PubMed ID: 23990161 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]