These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

2646 related articles for article (PubMed ID: 21772288)

  • 21. Activation of the beta(2)-adrenergic receptor-Galpha(s) complex leads to rapid depalmitoylation and inhibition of repalmitoylation of both the receptor and Galpha(s).
    Loisel TP; Ansanay H; Adam L; Marullo S; Seifert R; Lagacé M; Bouvier M
    J Biol Chem; 1999 Oct; 274(43):31014-9. PubMed ID: 10521499
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pivotal role of extended linker 2 in the activation of Gα by G protein-coupled receptor.
    Huang J; Sun Y; Zhang JJ; Huang XY
    J Biol Chem; 2015 Jan; 290(1):272-83. PubMed ID: 25414258
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular analysis of beta(2)-adrenoceptor coupling to G(s)-, G(i)-, and G(q)-proteins.
    Wenzel-Seifert K; Seifert R
    Mol Pharmacol; 2000 Nov; 58(5):954-66. PubMed ID: 11040042
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production, crystallization and preliminary X-ray diffraction of the Gαs α-helical domain in complex with a nanobody.
    Triest S; Wohlkönig A; Pardon E; Steyaert J
    Acta Crystallogr F Struct Biol Commun; 2014 Nov; 70(Pt 11):1504-7. PubMed ID: 25372817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Stable association of G proteins with beta 2AR is independent of the state of receptor activation.
    Lachance M; Ethier N; Wolbring G; Schnetkamp PP; Hébert TE
    Cell Signal; 1999 Jul; 11(7):523-33. PubMed ID: 10405763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decoding Principles of Selective GPCR-Gα Coupling.
    Lim SM
    Biochemistry; 2020 Jan; 59(2):130-131. PubMed ID: 31556596
    [No Abstract]   [Full Text] [Related]  

  • 27. Examination of the effects of increasing Gs protein on beta2-adrenergic receptor, Gs, and adenylyl cyclase interactions.
    Krumins AM; Barber R
    Biochem Pharmacol; 1997 Jul; 54(1):61-72. PubMed ID: 9296351
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of agonist stimulation and beta(2)-adrenergic receptor level on cellular distribution of gs(alpha) protein.
    Can A; Sayar K; Friedman E; Ambrosio C; Erdemli E; Gurdal H
    Cell Signal; 2000 May; 12(5):303-9. PubMed ID: 10822171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Principles of Ligand Specificity on beta-2-adrenergic receptor.
    Chan HC; Filipek S; Yuan S
    Sci Rep; 2016 Oct; 6():34736. PubMed ID: 27703221
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling GPCR active state conformations: the β(2)-adrenergic receptor.
    Simpson LM; Wall ID; Blaney FE; Reynolds CA
    Proteins; 2011 May; 79(5):1441-57. PubMed ID: 21337626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Divergent agonist selectivity in activating β1- and β2-adrenoceptors for G-protein and arrestin coupling.
    Casella I; Ambrosio C; Grò MC; Molinari P; Costa T
    Biochem J; 2011 Aug; 438(1):191-202. PubMed ID: 21561432
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In silico analysis of the binding of agonists and blockers to the β2-adrenergic receptor.
    Vilar S; Karpiak J; Berk B; Costanzi S
    J Mol Graph Model; 2011 Apr; 29(6):809-17. PubMed ID: 21334234
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Minute-scale persistence of a GPCR conformation state triggered by non-cognate G protein interactions primes signaling.
    Gupte TM; Ritt M; Dysthe M; Malik RU; Sivaramakrishnan S
    Nat Commun; 2019 Oct; 10(1):4836. PubMed ID: 31645561
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Exploring the Activation Process of the β2AR-G
    Bai C; Wang J; Mondal D; Du Y; Ye RD; Warshel A
    J Am Chem Soc; 2021 Jul; 143(29):11044-11051. PubMed ID: 34255502
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microsecond Molecular Dynamics Simulations Provide Insight into the Allosteric Mechanism of the Gs Protein Uncoupling from the β2 Adrenergic Receptor.
    Sun X; Ågren H; Tu Y
    J Phys Chem B; 2014 Dec; 118(51):14737-44. PubMed ID: 25453446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein.
    Whorton MR; Bokoch MP; Rasmussen SG; Huang B; Zare RN; Kobilka B; Sunahara RK
    Proc Natl Acad Sci U S A; 2007 May; 104(18):7682-7. PubMed ID: 17452637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fusion of beta 2-adrenergic receptor to G alpha s in mammalian cells: identification of a specific signal transduction species not characteristic of constitutive activation or precoupling.
    Small KM; Forbes SL; Rahman FF; Liggett SB
    Biochemistry; 2000 Mar; 39(10):2815-21. PubMed ID: 10704234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and characterization of pepducins as Gs-biased allosteric agonists.
    Carr R; Du Y; Quoyer J; Panettieri RA; Janz JM; Bouvier M; Kobilka BK; Benovic JL
    J Biol Chem; 2014 Dec; 289(52):35668-84. PubMed ID: 25395624
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutagenesis within helix 6 of the human beta1-adrenergic receptor identifies Lysine324 as a residue involved in imparting the high-affinity binding state of agonists.
    Zeitoun O; Santos NM; Gardner LA; White SW; Bahouth SW
    Mol Pharmacol; 2006 Sep; 70(3):838-50. PubMed ID: 16760361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Understanding the effects on constitutive activation and drug binding of a D130N mutation in the β2 adrenergic receptor via molecular dynamics simulation.
    Zhu Y; Yuan Y; Xiao X; Zhang L; Guo Y; Pu X
    J Mol Model; 2014 Nov; 20(11):2491. PubMed ID: 25342155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 133.