These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Involvement of the vacuolar H(+)-ATPase in animal virus entry. Pérez L; Carrasco L J Gen Virol; 1994 Oct; 75 ( Pt 10)():2595-606. PubMed ID: 7931146 [TBL] [Abstract][Full Text] [Related]
5. A mathematical model of the trafficking of acid-dependent enveloped viruses: application to the binding, uptake, and nuclear accumulation of baculovirus. Dee KU; Shuler ML Biotechnol Bioeng; 1997 Jun; 54(5):468-90. PubMed ID: 18634139 [TBL] [Abstract][Full Text] [Related]
6. Stochastic entry of enveloped viruses: fusion versus endocytosis. Chou T Biophys J; 2007 Aug; 93(4):1116-23. PubMed ID: 17513379 [TBL] [Abstract][Full Text] [Related]
7. Viruses as model systems in cell biology. Compans RW; Roberts PC Methods Cell Biol; 1994; 43 Pt A():3-42. PubMed ID: 7823868 [TBL] [Abstract][Full Text] [Related]
8. Low pH-induced pore formation by spike proteins of enveloped viruses. Käsermann F; Kempf C J Gen Virol; 1996 Dec; 77 ( Pt 12)():3025-32. PubMed ID: 9000093 [TBL] [Abstract][Full Text] [Related]
10. Early interactions between animal viruses and the host cell: relevance to viral vaccines. Patterson S; Oxford JS Vaccine; 1986 Jun; 4(2):79-90. PubMed ID: 3014773 [TBL] [Abstract][Full Text] [Related]
11. Involvement of carbohydrates in vesicular stomatitis virus-cell early interaction. Mastromarino P; Conti C; Ciuffarella MG; Orsi N Acta Virol; 1989 Dec; 33(6):513-20. PubMed ID: 2576593 [TBL] [Abstract][Full Text] [Related]
12. Characterization of membrane components of the erythrocyte involved in vesicular stomatitis virus attachment and fusion at acidic pH. Mastromarino P; Conti C; Goldoni P; Hauttecoeur B; Orsi N J Gen Virol; 1987 Sep; 68 ( Pt 9)():2359-69. PubMed ID: 2821175 [TBL] [Abstract][Full Text] [Related]
13. Attenuation of recombinant vesicular stomatitis viruses encoding mutant glycoproteins demonstrate a critical role for maintaining a high pH threshold for membrane fusion in viral fitness. Fredericksen BL; Whitt MA Virology; 1998 Jan; 240(2):349-58. PubMed ID: 9454708 [TBL] [Abstract][Full Text] [Related]
14. Interaction of enveloped viruses with planar bilayer membranes: observations on Sendai, influenza, vesicular stomatitis, and Semliki Forest viruses. Young JD; Young GP; Cohn ZA; Lenard J Virology; 1983 Jul; 128(1):186-94. PubMed ID: 6308891 [TBL] [Abstract][Full Text] [Related]
15. A simple model to predict the effectiveness of molecules that block attachment of human rhinoviruses and other viruses. Wickham TJ; Shuler ML; Hammer DA Biotechnol Prog; 1995; 11(2):164-70. PubMed ID: 7766100 [TBL] [Abstract][Full Text] [Related]
16. Cell integrins: commonly used receptors for diverse viral pathogens. Stewart PL; Nemerow GR Trends Microbiol; 2007 Nov; 15(11):500-7. PubMed ID: 17988871 [TBL] [Abstract][Full Text] [Related]
17. A comparative study of entry modes into C6/36 cells by Semliki Forest and Japanese encephalitis viruses. Hase T; Summers PL; Cohen WH Arch Virol; 1989; 108(1-2):101-14. PubMed ID: 2596972 [TBL] [Abstract][Full Text] [Related]
18. Gangliosides in early interactions between vesicular stomatitis virus and CER cells. Sinibaldi L; Goldoni P; Seganti L; Superti F; Tsiang H; Orsi N Microbiologica; 1985 Oct; 8(4):355-65. PubMed ID: 2999565 [TBL] [Abstract][Full Text] [Related]
19. Binding, endocytosis, and degradation of enveloped animal viruses. Marsh M; Helenius A; Matlin K; Simons K Methods Enzymol; 1983; 98():260-6. PubMed ID: 6321902 [No Abstract] [Full Text] [Related]