These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 21773631)

  • 61. Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods: oxidation of CO adsorbed on carbon-supported Pt catalyst and unsupported Pt black.
    Kunimatsu K; Sato T; Uchida H; Watanabe M
    Langmuir; 2008 Apr; 24(7):3590-601. PubMed ID: 18288871
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Redox-active ligands facilitate bimetallic O2 homolysis at five-coordinate oxorhenium(V) centers.
    Lippert CA; Arnstein SA; Sherrill CD; Soper JD
    J Am Chem Soc; 2010 Mar; 132(11):3879-92. PubMed ID: 20192214
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Molecular and electronic structures of dinuclear iron complexes incorporating strongly electron-donating ligands: implications for the generation of the one- and two-electron oxidized forms.
    Strautmann JB; Freiherr von Richthofen CG; Heinze-Brückner G; DeBeer S; Bothe E; Bill E; Weyhermüller T; Stammler A; Bögge H; Glaser T
    Inorg Chem; 2011 Jan; 50(1):155-71. PubMed ID: 21114259
    [TBL] [Abstract][Full Text] [Related]  

  • 64. First Principles Study on the CO Oxidation on Mn-Embedded Divacancy Graphene.
    Jiang Q; Zhang J; Ao Z; Huang H; He H; Wu Y
    Front Chem; 2018; 6():187. PubMed ID: 29911100
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Transition metal attenuated mechanism for protective alumina formation from first principles.
    Babic V; Geers C; Panas I
    RSC Adv; 2018 Dec; 8(72):41255-41269. PubMed ID: 35559292
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Catalytic oxidation of CH
    Zhang S; Lv X; Wang J; Wang T; Shan J
    J Mol Model; 2021 Nov; 27(12):346. PubMed ID: 34748110
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Iron-embedded C2N monolayer: a promising low-cost and high-activity single-atom catalyst for CO oxidation.
    He BL; Shen JS; Tian ZX
    Phys Chem Chem Phys; 2016 Sep; 18(35):24261-9. PubMed ID: 27530710
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Structural Diversity and Electronic Properties of 3d Transition Metal Tetraphosphides, TMP
    Gong N; Deng C; Wu L; Wan B; Wang Z; Li Z; Gou H; Gao F
    Inorg Chem; 2018 Aug; 57(15):9385-9392. PubMed ID: 30024155
    [TBL] [Abstract][Full Text] [Related]  

  • 69. First-principles study of one-dimensional sandwich wires [(P)₅TM]∞ (TM = Ti, V, Cr, Mn, Fe, Co).
    Ma Y; Dai Y; Li X; Li Z; Huang B
    J Phys Condens Matter; 2013 Oct; 25(39):395503. PubMed ID: 24002217
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structure Sensitivity of the Oxygen Evolution Reaction Catalyzed by Cobalt(II,III) Oxide.
    Plaisance CP; van Santen RA
    J Am Chem Soc; 2015 Nov; 137(46):14660-72. PubMed ID: 26479891
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Combinatorial selection of a two-dimensional 3d-TM-tetracyanoquinodimethane (TM-TCNQ) monolayer as a high-activity nanocatalyst for CO oxidation.
    Deng Q; Wu T; Chen G; Hansen HA; Vegge T
    Phys Chem Chem Phys; 2018 Feb; 20(7):5173-5179. PubMed ID: 29393946
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Spin Transport Properties of One-Dimensional Benzene Ligand Organobimetallic Sandwich Molecular Wires.
    Lu K; Gao W; Xu M; Sun Y; Li J; Yao X; Liu Y; Zhang X
    ACS Omega; 2020 Mar; 5(10):5534-5539. PubMed ID: 32201846
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Complementary mechanistic properties of Fe- and Mn-doped aluminophosphates in the catalytic aerobic oxidation of hydrocarbons.
    Gómez-Hortigüela L; Corà F; Catlow CR
    Phys Chem Chem Phys; 2013 May; 15(18):6870-4. PubMed ID: 23549259
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Highly active mixed-metal nanosheet water oxidation catalysts made by pulsed-laser ablation in liquids.
    Hunter BM; Blakemore JD; Deimund M; Gray HB; Winkler JR; Müller AM
    J Am Chem Soc; 2014 Sep; 136(38):13118-21. PubMed ID: 25197774
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structure, stability and photocatalytic H2 production by Cr-, Mn-, Fe-, Co-, and Ni-substituted decaniobate clusters.
    Son JH; Wang J; Casey WH
    Dalton Trans; 2014 Dec; 43(48):17928-33. PubMed ID: 25119426
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Hydrolysis on transition metal oxide clusters and the stabilities of M-O-M bridges.
    Johnson JR; Panas I
    Inorg Chem; 2000 Jul; 39(15):3192-204. PubMed ID: 11196854
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Computational and experimental evidence for a new TM-N3/C moiety family in non-PGM electrocatalysts.
    Kabir S; Artyushkova K; Kiefer B; Atanassov P
    Phys Chem Chem Phys; 2015 Jul; 17(27):17785-9. PubMed ID: 26086350
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The Novel Binuclear Hydroxyberyllate Species [Be(2)(OH)(7)](3-) and the Hydroxide Hydrate Anion [H(3)O(2)](-) as Components of Beryllate Equilibria.
    Schmidt M; Schier A; Riede J; Schmidbaur H
    Inorg Chem; 1998 Jul; 37(14):3452-3453. PubMed ID: 11670427
    [No Abstract]   [Full Text] [Related]  

  • 79. The mechanism of O-O bond formation in Tanaka's water oxidation catalyst.
    Ghosh S; Baik MH
    Angew Chem Int Ed Engl; 2012 Jan; 51(5):1221-4. PubMed ID: 22213120
    [No Abstract]   [Full Text] [Related]  

  • 80. Experimental proof for coordination-dependent valence of Tm metal.
    Domke M; Laubschat C; Prietsch M; Mandel T; Kaindl G; Schneider WD
    Phys Rev Lett; 1986 Mar; 56(12):1287-1290. PubMed ID: 10032622
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.