These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 21773633)

  • 21. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 22. High-Density Microporous Drainage-Integrating Sheath Flow Generator for Streamlining Microfluidic Cell Sorting Systems.
    Hayashi A; Hemmi R; Saito Y; Utoh R; Taniguchi T; Yamada M
    Anal Chem; 2024 Apr; 96(17):6764-6773. PubMed ID: 38619911
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Separation of platelets from whole blood using standing surface acoustic waves in a microchannel.
    Nam J; Lim H; Kim D; Shin S
    Lab Chip; 2011 Oct; 11(19):3361-4. PubMed ID: 21842070
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of Chip Inlet Geometry in Microfluidic Devices for Cell Studies.
    Sun YS
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27314318
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Paper-based microfluidic devices for analysis of clinically relevant analytes present in urine and saliva.
    Klasner SA; Price AK; Hoeman KW; Wilson RS; Bell KJ; Culbertson CT
    Anal Bioanal Chem; 2010 Jul; 397(5):1821-9. PubMed ID: 20425107
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of a fluidic circuit-based microcytometer for circulating tumor cell detection and enumeration.
    Guo J; Lei W; Ma X; Xue P; Chen Y; Kang Y
    IEEE Trans Biomed Circuits Syst; 2014 Feb; 8(1):35-41. PubMed ID: 24048075
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A microfluidics approach for the isolation of nucleated red blood cells (NRBCs) from the peripheral blood of pregnant women.
    Huang R; Barber TA; Schmidt MA; Tompkins RG; Toner M; Bianchi DW; Kapur R; Flejter WL
    Prenat Diagn; 2008 Oct; 28(10):892-9. PubMed ID: 18821715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS).
    Abdelgawad M; Wu C; Chien WY; Geddie WR; Jewett MA; Sun Y
    Lab Chip; 2011 Feb; 11(3):545-51. PubMed ID: 21079874
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Self-driven filter-based blood plasma separator microfluidic chip for point-of-care testing.
    Madadi H; Casals-Terré J; Mohammadi M
    Biofabrication; 2015 May; 7(2):025007. PubMed ID: 26000798
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deformability based cell margination--a simple microfluidic design for malaria-infected erythrocyte separation.
    Hou HW; Bhagat AA; Chong AG; Mao P; Tan KS; Han J; Lim CT
    Lab Chip; 2010 Oct; 10(19):2605-13. PubMed ID: 20689864
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Continuous sorting and separation of microparticles by size using AC dielectrophoresis in a PDMS microfluidic device with 3-D conducting PDMS composite electrodes.
    Lewpiriyawong N; Yang C; Lam YC
    Electrophoresis; 2010 Aug; 31(15):2622-31. PubMed ID: 20665920
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A disposable microfluidic device with a reusable magnetophoretic functional substrate for isolation of circulating tumor cells.
    Cho H; Kim J; Jeon CW; Han KH
    Lab Chip; 2017 Nov; 17(23):4113-4123. PubMed ID: 29094741
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Portable platform for leukocyte extraction from blood using sheath-free microfluidic DLD.
    Chavez-Pineda OG; Rodriguez-Moncayo R; Gonzalez-Suarez AM; Guevara-Pantoja PE; Maravillas-Montero JL; Garcia-Cordero JL
    Lab Chip; 2024 Apr; 24(9):2575-2589. PubMed ID: 38646820
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Silicon-based microfilters for whole blood cell separation.
    Ji HM; Samper V; Chen Y; Heng CK; Lim TM; Yobas L
    Biomed Microdevices; 2008 Apr; 10(2):251-7. PubMed ID: 17914675
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Numerical evaluation and experimental validation of cross-flow microfiltration device design.
    De Jesús Vega M; Wakim J; Orbey N; Barry C
    Biomed Microdevices; 2019 Feb; 21(1):21. PubMed ID: 30790088
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic-Based Enrichment and Retrieval of Circulating Tumor Cells for RT-PCR Analysis.
    Gogoi P; Sepehri S; Chow W; Handique K; Wang Y
    Methods Mol Biol; 2017; 1634():55-64. PubMed ID: 28819840
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical design of microfluidic-microelectric hybrid chip for the separation of biological cells.
    Ye T; Li H; Lam KY
    Langmuir; 2011 Mar; 27(6):3188-97. PubMed ID: 21332176
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A numerical and experimental study of acoustic micromixing in 3D microchannels for lab-on-a-chip devices.
    Catarino SO; Pinto VC; Sousa PJ; Lima R; Miranda JM; Minas G
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5660-5663. PubMed ID: 28269539
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modulation of aspect ratio for complete separation in an inertial microfluidic channel.
    Zhou J; Giridhar PV; Kasper S; Papautsky I
    Lab Chip; 2013 May; 13(10):1919-29. PubMed ID: 23529341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Centrifugal Microfluidic Platform That Separates Whole Blood Samples into Multiple Removable Fractions Due to Several Discrete but Continuous Density Gradient Sections.
    Moen ST; Hatcher CL; Singh AK
    PLoS One; 2016; 11(4):e0153137. PubMed ID: 27054764
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.