These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 21774326)
1. [Differential expression of proteins in Oryza sativa leaves in response to cadmium stress]. Xiao QT; Rong H; Zhou LY; Liu J; Lin WX; Lin RY Ying Yong Sheng Tai Xue Bao; 2011 Apr; 22(4):1013-9. PubMed ID: 21774326 [TBL] [Abstract][Full Text] [Related]
2. The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress. Nwugo CC; Huerta AJ J Proteome Res; 2011 Feb; 10(2):518-28. PubMed ID: 21117708 [TBL] [Abstract][Full Text] [Related]
3. Differential phosphoproteome study of the response to cadmium stress in rice. Fang Y; Deng X; Lu X; Zheng J; Jiang H; Rao Y; Zeng D; Hu J; Zhang X; Xue D Ecotoxicol Environ Saf; 2019 Sep; 180():780-788. PubMed ID: 31154203 [TBL] [Abstract][Full Text] [Related]
4. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Liu CW; Chang TS; Hsu YK; Wang AZ; Yen HC; Wu YP; Wang CS; Lai CC Proteomics; 2014 Aug; 14(15):1759-75. PubMed ID: 24841874 [TBL] [Abstract][Full Text] [Related]
5. Physiological and proteomic analysis of selenium-mediated tolerance to Cd stress in cucumber (Cucumis sativus L.). Sun H; Dai H; Wang X; Wang G Ecotoxicol Environ Saf; 2016 Nov; 133():114-26. PubMed ID: 27434422 [TBL] [Abstract][Full Text] [Related]
6. Proteomic changes in rice leaves grown under open field high temperature stress conditions. Das S; Krishnan P; Mishra V; Kumar R; Ramakrishnan B; Singh NK Mol Biol Rep; 2015 Nov; 42(11):1545-58. PubMed ID: 26323334 [TBL] [Abstract][Full Text] [Related]
7. Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry. Ahsan N; Lee DG; Kim KH; Alam I; Lee SH; Lee KW; Lee H; Lee BH Chemosphere; 2010 Jan; 78(3):224-31. PubMed ID: 19948354 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of proteome alterations induced by cadmium stress in sunflower (Helianthus annuus L.) cultures. Lopes Júnior CA; Barbosa Hde S; Moretto Galazzi R; Ferreira Koolen HH; Gozzo FC; Arruda MA Ecotoxicol Environ Saf; 2015 Sep; 119():170-7. PubMed ID: 26004357 [TBL] [Abstract][Full Text] [Related]
9. Changes in the Proteome of Gutsch A; Zouaghi S; Renaut J; Cuypers A; Hausman JF; Sergeant K Int J Mol Sci; 2018 Aug; 19(9):. PubMed ID: 30149497 [TBL] [Abstract][Full Text] [Related]
10. A proteomic approach in analyzing heat-responsive proteins in rice leaves. Lee DG; Ahsan N; Lee SH; Kang KY; Bahk JD; Lee IJ; Lee BH Proteomics; 2007 Sep; 7(18):3369-83. PubMed ID: 17722143 [TBL] [Abstract][Full Text] [Related]
11. Identification of gibberellin acid-responsive proteins in rice leaf sheath using proteomics. Gu JY; Wang Y; Zhang X; Zhang SH; Gao Y; An CC Front Biosci (Landmark Ed); 2010 Jun; 15(3):826-39. PubMed ID: 20515728 [TBL] [Abstract][Full Text] [Related]
12. Does the different proteomic profile found in apical and basal leaves of spinach reveal a strategy of this plant toward cadmium pollution response? Fagioni M; Zolla L J Proteome Res; 2009 May; 8(5):2519-29. PubMed ID: 19290619 [TBL] [Abstract][Full Text] [Related]
13. A proteomic analysis of rice seedlings responding to 1,2,4-trichlorobenzene stress. Ge C; Wan D; Wang Z; Ding Y; Wang Y; Shang Q; Ma F; Luo S J Environ Sci (China); 2008; 20(3):309-19. PubMed ID: 18595398 [TBL] [Abstract][Full Text] [Related]
14. Comparative proteomic analysis of two tobacco (Nicotiana tabacum) genotypes differing in Cd tolerance. Xie L; He X; Shang S; Zheng W; Liu W; Zhang G; Wu F Biometals; 2014 Dec; 27(6):1277-89. PubMed ID: 25173101 [TBL] [Abstract][Full Text] [Related]
15. Changes in the proteome of the cadmium-tolerant bacteria Cupriavidus taiwanensis KKU2500-3 in response to cadmium toxicity. Siripornadulsil S; Thanwisai L; Siripornadulsil W Can J Microbiol; 2014 Mar; 60(3):121-31. PubMed ID: 24588385 [TBL] [Abstract][Full Text] [Related]
16. Insight into the salt tolerance factors of a wild halophytic rice, Porteresia coarctata: a physiological and proteomic approach. Sengupta S; Majumder AL Planta; 2009 Mar; 229(4):911-29. PubMed ID: 19130079 [TBL] [Abstract][Full Text] [Related]
17. Proteomics analysis reveals multiple regulatory mechanisms in response to selenium in rice. Wang YD; Wang X; Wong YS J Proteomics; 2012 Mar; 75(6):1849-66. PubMed ID: 22236520 [TBL] [Abstract][Full Text] [Related]
18. Proteomic analysis of upland rice (Oryza sativa L.) exposed to intermittent water deficit. Rabello FR; Villeth GR; Rabello AR; Rangel PH; Guimarães CM; Huergo LF; Souza EM; Pedrosa FO; Ferreira ME; Mehta A Protein J; 2014 Jun; 33(3):221-30. PubMed ID: 24652039 [TBL] [Abstract][Full Text] [Related]
19. Sulfur alleviates arsenic toxicity by reducing its accumulation and modulating proteome, amino acids and thiol metabolism in rice leaves. Dixit G; Singh AP; Kumar A; Dwivedi S; Deeba F; Kumar S; Suman S; Adhikari B; Shukla Y; Trivedi PK; Pandey V; Tripathi RD Sci Rep; 2015 Nov; 5():16205. PubMed ID: 26552588 [TBL] [Abstract][Full Text] [Related]
20. Differential expression of defense/stress-related marker proteins in leaves of a unique rice blast lesion mimic mutant (blm). Jung YH; Rakwal R; Agrawal GK; Shibato J; Kim JA; Lee MO; Choi PK; Jung SH; Kim SH; Koh HJ; Yonekura M; Iwahashi H; Jwa NS J Proteome Res; 2006 Oct; 5(10):2586-98. PubMed ID: 17022630 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]