BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 21774477)

  • 1. Environmental impacts of algae-derived biodiesel and bioelectricity for transportation.
    Clarens AF; Nassau H; Resurreccion EP; White MA; Colosi LM
    Environ Sci Technol; 2011 Sep; 45(17):7554-60. PubMed ID: 21774477
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Greater transportation energy and GHG offsets from bioelectricity than ethanol.
    Campbell JE; Lobell DB; Field CB
    Science; 2009 May; 324(5930):1055-7. PubMed ID: 19423776
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels.
    Hill J; Nelson E; Tilman D; Polasky S; Tiffany D
    Proc Natl Acad Sci U S A; 2006 Jul; 103(30):11206-10. PubMed ID: 16837571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Land-use and alternative bioenergy pathways for waste biomass.
    Campbell JE; Block E
    Environ Sci Technol; 2010 Nov; 44(22):8665-9. PubMed ID: 20883033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental life cycle comparison of algae to other bioenergy feedstocks.
    Clarens AF; Resurreccion EP; White MA; Colosi LM
    Environ Sci Technol; 2010 Mar; 44(5):1813-9. PubMed ID: 20085253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Algae biodiesel life cycle assessment using current commercial data.
    Passell H; Dhaliwal H; Reno M; Wu B; Ben Amotz A; Ivry E; Gay M; Czartoski T; Laurin L; Ayer N
    J Environ Manage; 2013 Nov; 129():103-11. PubMed ID: 23900083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Life-cycle energy and environmental analysis of bioethanol production from cassava in Thailand.
    Papong S; Malakul P
    Bioresour Technol; 2010 Jan; 101 Suppl 1():S112-8. PubMed ID: 19766487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renewable fuels from algae: an answer to debatable land based fuels.
    Singh A; Nigam PS; Murphy JD
    Bioresour Technol; 2011 Jan; 102(1):10-6. PubMed ID: 20615690
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ethanol or bioelectricity? Life cycle assessment of lignocellulosic bioenergy use in light-duty vehicles.
    Luk JM; Pourbafrani M; Saville BA; MacLean HL
    Environ Sci Technol; 2013 Sep; 47(18):10676-84. PubMed ID: 24016133
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Algae biodiesel has potential despite inconclusive results to date.
    Liu X; Clarens AF; Colosi LM
    Bioresour Technol; 2012 Jan; 104():803-6. PubMed ID: 22104101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioenergy production from perennial energy crops: a consequential LCA of 12 bioenergy scenarios including land use changes.
    Tonini D; Hamelin L; Wenzel H; Astrup T
    Environ Sci Technol; 2012 Dec; 46(24):13521-30. PubMed ID: 23126612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of water requirement factors for biomass conversion pathway.
    Singh S; Kumar A
    Bioresour Technol; 2011 Jan; 102(2):1316-28. PubMed ID: 20888758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of biochemical engineering in the production of biofuels from microalgae.
    Costa JA; de Morais MG
    Bioresour Technol; 2011 Jan; 102(1):2-9. PubMed ID: 20580548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life-cycle assessment of microalgae culture coupled to biogas production.
    Collet P; Hélias A; Lardon L; Ras M; Goy RA; Steyer JP
    Bioresour Technol; 2011 Jan; 102(1):207-14. PubMed ID: 20674343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimizing land use and nitrogen intensity of bioenergy.
    Miller SA
    Environ Sci Technol; 2010 May; 44(10):3932-9. PubMed ID: 20420363
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The potential of bio-methane as bio-fuel/bio-energy for reducing greenhouse gas emissions: a qualitative assessment for Europe in a life cycle perspective.
    Tilche A; Galatola M
    Water Sci Technol; 2008; 57(11):1683-92. PubMed ID: 18547917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marginal land-based biomass energy production in China.
    Tang Y; Xie JS; Geng S
    J Integr Plant Biol; 2010 Jan; 52(1):112-21. PubMed ID: 20074145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy-water nexus for mass cultivation of algae.
    Murphy CF; Allen DT
    Environ Sci Technol; 2011 Jul; 45(13):5861-8. PubMed ID: 21671675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach.
    Resurreccion EP; Colosi LM; White MA; Clarens AF
    Bioresour Technol; 2012 Dec; 126():298-306. PubMed ID: 23117186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Production of biodiesel and biogas from algae: a review of process train options.
    Wiley PE; Campbell JE; McKuin B
    Water Environ Res; 2011 Apr; 83(4):326-38. PubMed ID: 21553588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.