These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 21774534)
1. Nanoparticle characterization by cyclical electrical field-flow fractionation. Gigault J; Gale BK; Le Hecho I; Lespes G Anal Chem; 2011 Sep; 83(17):6565-72. PubMed ID: 21774534 [TBL] [Abstract][Full Text] [Related]
2. Characterization of a microscale cyclical electrical field flow fractionation system. Kantak A; Srinivas M; Gale B Lab Chip; 2006 May; 6(5):645-54. PubMed ID: 16652180 [TBL] [Abstract][Full Text] [Related]
3. Characterization of polymerized liposomes using a combination of dc and cyclical electrical field-flow fractionation. Sant HJ; Chakravarty S; Merugu S; Ferguson CG; Gale BK Anal Chem; 2012 Oct; 84(19):8323-9. PubMed ID: 22928609 [TBL] [Abstract][Full Text] [Related]
4. Biased cyclical electrical field flow fractionation for separation of sub 50 nm particles. Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK Anal Chem; 2013 Dec; 85(23):11225-32. PubMed ID: 24180262 [TBL] [Abstract][Full Text] [Related]
5. Biased cyclical electrical field-flow fractionation for separation of submicron particles. Ornthai M; Siripinyanond A; Gale BK Anal Bioanal Chem; 2016 Jan; 408(3):855-63. PubMed ID: 26612733 [TBL] [Abstract][Full Text] [Related]
6. Cyclical electrical field flow fractionation. Gale BK; Srinivas M Electrophoresis; 2005 May; 26(9):1623-32. PubMed ID: 15800965 [TBL] [Abstract][Full Text] [Related]
7. Effect of carrier ionic strength in microscale cyclical electrical field-flow fractionation. Kantak AS; Srinivas M; Gale BK Anal Chem; 2006 Apr; 78(8):2557-64. PubMed ID: 16615764 [TBL] [Abstract][Full Text] [Related]
8. Optimization of cyclical electrical field flow fractionation. Srinivas M; Sant HJ; Gale BK Electrophoresis; 2010 Oct; 31(20):3372-9. PubMed ID: 20922757 [TBL] [Abstract][Full Text] [Related]
9. A novel method for effective field measurements in electrical field-flow fractionation. Merugu S; Sant HJ; Gale BK Electrophoresis; 2012 Mar; 33(6):1040-7. PubMed ID: 22528424 [TBL] [Abstract][Full Text] [Related]
10. Electrical field-flow fractionation for metal nanoparticle characterization. Somchue W; Siripinyanond A; Gale BK Anal Chem; 2012 Jun; 84(11):4993-8. PubMed ID: 22551406 [TBL] [Abstract][Full Text] [Related]
11. Improved theory of cyclical electrical field flow fractionation. Kantak A; Merugu S; Gale BK Electrophoresis; 2006 Jul; 27(14):2833-43. PubMed ID: 16850427 [TBL] [Abstract][Full Text] [Related]
12. Characterization and differential retention of Q beta bacteriophage virus-like particles using cyclical electrical field-flow fractionation and asymmetrical flow field-flow fractionation. Shiri F; Petersen KE; Romanov V; Zou Q; Gale BK Anal Bioanal Chem; 2020 Mar; 412(7):1563-1572. PubMed ID: 31938845 [TBL] [Abstract][Full Text] [Related]
13. Circuit modification in electrical field flow fractionation systems generating higher resolution separation of nanoparticles. Tasci TO; Johnson WP; Fernandez DP; Manangon E; Gale BK J Chromatogr A; 2014 Oct; 1365():164-72. PubMed ID: 25246100 [TBL] [Abstract][Full Text] [Related]
14. Characterization of a microscale thermal-electrical field-flow fractionation system. Sant HJ; Gale BK J Chromatogr A; 2012 Feb; 1225():174-81. PubMed ID: 22226556 [TBL] [Abstract][Full Text] [Related]
15. Optimisation of asymmetrical flow field flow fractionation for environmental nanoparticles separation. Dubascoux S; Von Der Kammer F; Le Hécho I; Gautier MP; Lespes G J Chromatogr A; 2008 Oct; 1206(2):160-5. PubMed ID: 18778831 [TBL] [Abstract][Full Text] [Related]
16. Application of an asymmetric flow field flow fractionation multi-detector approach for metallic engineered nanoparticle characterization--prospects and limitations demonstrated on Au nanoparticles. Hagendorfer H; Kaegi R; Traber J; Mertens SF; Scherrers R; Ludwig C; Ulrich A Anal Chim Acta; 2011 Nov; 706(2):367-78. PubMed ID: 22023875 [TBL] [Abstract][Full Text] [Related]
17. Optimal separation times for electrical field flow fractionation with Couette flows. Pascal J; O'Hara R; Oyanader M; Arce PE Electrophoresis; 2008 Nov; 29(20):4238-46. PubMed ID: 18844324 [TBL] [Abstract][Full Text] [Related]
18. Comparison of measured acoustic power results gained by using three different methods on an ultrasonic low-frequency device. Petosić A; Svilar D; Ivancević B Ultrason Sonochem; 2011 Mar; 18(2):567-76. PubMed ID: 20850368 [TBL] [Abstract][Full Text] [Related]
19. Flow field-flow fractionation for the analysis and characterization of natural colloids and manufactured nanoparticles in environmental systems: a critical review. Baalousha M; Stolpe B; Lead JR J Chromatogr A; 2011 Jul; 1218(27):4078-103. PubMed ID: 21621214 [TBL] [Abstract][Full Text] [Related]
20. Influence of carrier solution ionic strength and injected sample load on retention and recovery of natural nanoparticles using Flow Field-Flow Fractionation. Neubauer E; v d Kammer F; Hofmann T J Chromatogr A; 2011 Sep; 1218(38):6763-73. PubMed ID: 21855877 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]