BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 21774536)

  • 1. Monitoring selectivity in kinase-promoted phosphorylation of densely packed peptide monolayers using label-free electrochemical detection.
    Snir E; Joore J; Timmerman P; Yitzchaik S
    Langmuir; 2011 Sep; 27(17):11212-21. PubMed ID: 21774536
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatically modified peptide surfaces: towards general electrochemical sensor platform for protein kinase catalyzed phosphorylations.
    Martić S; Labib M; Kraatz HB
    Analyst; 2011 Jan; 136(1):107-12. PubMed ID: 21042631
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrochemical strategy for sensing protein phosphorylation.
    Miao P; Ning L; Li X; Li P; Li G
    Bioconjug Chem; 2012 Jan; 23(1):141-5. PubMed ID: 22148592
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing kinase activities by electrochemistry, contact-angle measurements, and molecular-force interactions.
    Wilner OI; Guidotti C; Wieckowska A; Gill R; Willner I
    Chemistry; 2008; 14(26):7774-81. PubMed ID: 18698570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Asymmetry of electron transmission through monolayers of helical polyalanine adsorbed on gold surfaces.
    Sek S; Tolak A; Misicka A; Palys B; Bilewicz R
    J Phys Chem B; 2005 Oct; 109(39):18433-8. PubMed ID: 16853373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimal surface chemistry for peptide immobilization in on-chip phosphorylation analysis.
    Inamori K; Kyo M; Matsukawa K; Inoue Y; Sonoda T; Tatematsu K; Tanizawa K; Mori T; Katayama Y
    Anal Chem; 2008 Feb; 80(3):643-50. PubMed ID: 18179244
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of gold nanoparticle size (2-50 nm) upon its electrochemical behavior: an electrochemical impedance spectroscopic and voltammetric study.
    Bonanni A; Pumera M; Miyahara Y
    Phys Chem Chem Phys; 2011 Mar; 13(11):4980-6. PubMed ID: 21258669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-free and sequence-specific DNA detection down to a picomolar level with carbon nanotubes as support for probe DNA.
    Zhu N; Lin Y; Yu P; Su L; Mao L
    Anal Chim Acta; 2009 Sep; 650(1):44-8. PubMed ID: 19720171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of an electrochemical metal-ion biosensor using self-assembled peptide nanofibrils.
    Viguier B; Zór K; Kasotakis E; Mitraki A; Clausen CH; Svendsen WE; Castillo-León J
    ACS Appl Mater Interfaces; 2011 May; 3(5):1594-600. PubMed ID: 21443268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gold nanoparticle-based electrochemical detection of protein phosphorylation.
    Kerman K; Chikae M; Yamamura S; Tamiya E
    Anal Chim Acta; 2007 Apr; 588(1):26-33. PubMed ID: 17386790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of an electrochemical DNA assay by using a 48-electrode array and redox amplification studies by means of scanning electrochemical microscopy.
    Neugebauer S; Zimdars A; Liepold P; Gebala M; Schuhmann W; Hartwich G
    Chembiochem; 2009 May; 10(7):1193-9. PubMed ID: 19353601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of TAT-mediated transport of detachable kinase substrates.
    Soughayer JS; Wang Y; Li H; Cheung SH; Rossi FM; Stanbridge EJ; Sims CE; Allbritton NL
    Biochemistry; 2004 Jul; 43(26):8528-40. PubMed ID: 15222764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Label-free electrochemical impedance detection of kinase and phosphatase activities using carbon nanofiber nanoelectrode arrays.
    Li Y; Syed L; Liu J; Hua DH; Li J
    Anal Chim Acta; 2012 Sep; 744():45-53. PubMed ID: 22935373
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of probe density and hybridization temperature on the response of an electrochemical hairpin-DNA sensor.
    Kjällman TH; Peng H; Soeller C; Travas-Sejdic J
    Anal Chem; 2008 Dec; 80(24):9460-6. PubMed ID: 19006336
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An electrochemical study into the interaction between complement-derived peptides and DOPC mono- and bilayers.
    Ringstad L; Protopapa E; Lindholm-Sethson B; Schmidtchen A; Nelson A; Malmsten M
    Langmuir; 2008 Jan; 24(1):208-16. PubMed ID: 18052298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibody-free peptide substrate screening of serine/threonine kinase (protein kinase A) with a biotinylated detection probe.
    Kim M; Park YS; Shin DS; Kim J; Kim BG; Lee YS
    Anal Biochem; 2011 Jun; 413(1):30-5. PubMed ID: 21310143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimizing electrode-attached redox-peptide systems for kinetic characterization of protease action on immobilized substrates. Observation of dissimilar behavior of trypsin and thrombin enzymes.
    Anne A; Chovin A; Demaille C
    Langmuir; 2012 Jun; 28(23):8804-13. PubMed ID: 22591015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a troponin I biosensor using a peptide obtained through phage display.
    Wu J; Cropek DM; West AC; Banta S
    Anal Chem; 2010 Oct; 82(19):8235-43. PubMed ID: 20831206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Challenges of electrochemical impedance spectroscopy in protein biosensing.
    Bogomolova A; Komarova E; Reber K; Gerasimov T; Yavuz O; Bhatt S; Aldissi M
    Anal Chem; 2009 May; 81(10):3944-9. PubMed ID: 19364089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical detection of protein tyrosine kinase-catalysed phosphorylation using gold nanoparticles.
    Kerman K; Kraatz HB
    Biosens Bioelectron; 2009 Jan; 24(5):1484-9. PubMed ID: 19091542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.