BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 21774554)

  • 1. Regulated O2 activation in flavin-dependent monooxygenases.
    Frederick RE; Mayfield JA; DuBois JL
    J Am Chem Soc; 2011 Aug; 133(32):12338-41. PubMed ID: 21774554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural insight into the mechanism of oxygen activation and substrate selectivity of flavin-dependent N-hydroxylating monooxygenases.
    Franceschini S; Fedkenheuer M; Vogelaar NJ; Robinson HH; Sobrado P; Mattevi A
    Biochemistry; 2012 Sep; 51(36):7043-5. PubMed ID: 22928747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aspergillus fumigatus SidA is a highly specific ornithine hydroxylase with bound flavin cofactor.
    Chocklett SW; Sobrado P
    Biochemistry; 2010 Aug; 49(31):6777-83. PubMed ID: 20614882
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive spectroscopic, steady state, and transient kinetic studies of a representative siderophore-associated flavin monooxygenase.
    Mayfield JA; Frederick RE; Streit BR; Wencewicz TA; Ballou DP; DuBois JL
    J Biol Chem; 2010 Oct; 285(40):30375-88. PubMed ID: 20650894
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
    Robinson R; Franceschini S; Fedkenheuer M; Rodriguez PJ; Ellerbrock J; Romero E; Echandi MP; Martin Del Campo JS; Sobrado P
    Biochim Biophys Acta; 2014 Apr; 1844(4):778-84. PubMed ID: 24534646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New frontiers in flavin-dependent monooxygenases.
    Reis RAG; Li H; Johnson M; Sobrado P
    Arch Biochem Biophys; 2021 Mar; 699():108765. PubMed ID: 33460580
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavin-containing monooxygenases in plants: looking beyond detox.
    Schlaich NL
    Trends Plant Sci; 2007 Sep; 12(9):412-8. PubMed ID: 17765596
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Determinants of Flavin Dynamics in a Class B Monooxygenase.
    Campbell AC; Robinson R; Mena-Aguilar D; Sobrado P; Tanner JJ
    Biochemistry; 2020 Dec; 59(48):4609-4616. PubMed ID: 33226785
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Ser-257 in the sliding mechanism of NADP(H) in the reaction catalyzed by the Aspergillus fumigatus flavin-dependent ornithine N5-monooxygenase SidA.
    Shirey C; Badieyan S; Sobrado P
    J Biol Chem; 2013 Nov; 288(45):32440-32448. PubMed ID: 24072704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trapping conformational states of a flavin-dependent
    Campbell AC; Stiers KM; Martin Del Campo JS; Mehra-Chaudhary R; Sobrado P; Tanner JJ
    J Biol Chem; 2020 Sep; 295(38):13239-13249. PubMed ID: 32723870
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subclade of flavin-monooxygenases involved in aliphatic glucosinolate biosynthesis.
    Li J; Hansen BG; Ober JA; Kliebenstein DJ; Halkier BA
    Plant Physiol; 2008 Nov; 148(3):1721-33. PubMed ID: 18799661
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibition of the Flavin-Dependent Monooxygenase Siderophore A (SidA) Blocks Siderophore Biosynthesis and Aspergillus fumigatus Growth.
    Martín Del Campo JS; Vogelaar N; Tolani K; Kizjakina K; Harich K; Sobrado P
    ACS Chem Biol; 2016 Nov; 11(11):3035-3042. PubMed ID: 27588426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Same Substrate, Many Reactions: Oxygen Activation in Flavoenzymes.
    Romero E; Gómez Castellanos JR; Gadda G; Fraaije MW; Mattevi A
    Chem Rev; 2018 Feb; 118(4):1742-1769. PubMed ID: 29323892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How pH modulates the reactivity and selectivity of a siderophore-associated flavin monooxygenase.
    Frederick RE; Ojha S; Lamb A; Dubois JL
    Biochemistry; 2014 Apr; 53(12):2007-16. PubMed ID: 24490904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A fluorescence polarization binding assay to identify inhibitors of flavin-dependent monooxygenases.
    Qi J; Kizjakina K; Robinson R; Tolani K; Sobrado P
    Anal Biochem; 2012 Jun; 425(1):80-7. PubMed ID: 22410281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights in the kinetic mechanism of the eukaryotic Baeyer-Villiger monooxygenase BVMOAf1 from Aspergillus fumigatus Af293.
    Mascotti ML; Kurina-Sanz M; Juri Ayub M; Fraaije MW
    Biochimie; 2014 Dec; 107 Pt B():270-6. PubMed ID: 25230086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flavin dependent monooxygenases.
    Huijbers MM; Montersino S; Westphal AH; Tischler D; van Berkel WJ
    Arch Biochem Biophys; 2014 Feb; 544():2-17. PubMed ID: 24361254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution of enzyme functionality in the flavin-containing monooxygenases.
    Bailleul G; Yang G; Nicoll CR; Mattevi A; Fraaije MW; Mascotti ML
    Nat Commun; 2023 Feb; 14(1):1042. PubMed ID: 36823138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Promiscuous Flavin-Dependent Monooxygenase PboD from
    Wu M; Janzen DJ; Guan Z; Ye Y; Zhang Y; Li SM
    J Nat Prod; 2024 Apr; 87(4):1171-1178. PubMed ID: 38557026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.