These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 21774554)

  • 21. Control of catalysis in flavin-dependent monooxygenases.
    Palfey BA; McDonald CA
    Arch Biochem Biophys; 2010 Jan; 493(1):26-36. PubMed ID: 19944667
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flavin-containing monooxygenases: enzymes adapted for multisubstrate specificity.
    Ziegler DM
    Trends Pharmacol Sci; 1990 Aug; 11(8):321-4. PubMed ID: 2203193
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dynamics involved in catalysis by single-component and two-component flavin-dependent aromatic hydroxylases.
    Ballou DP; Entsch B; Cole LJ
    Biochem Biophys Res Commun; 2005 Dec; 338(1):590-8. PubMed ID: 16236251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual role of NADP(H) in the reaction of a flavin dependent N-hydroxylating monooxygenase.
    Romero E; Fedkenheuer M; Chocklett SW; Qi J; Oppenheimer M; Sobrado P
    Biochim Biophys Acta; 2012 Jun; 1824(6):850-7. PubMed ID: 22465572
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flavin oxidation in flavin-dependent N-monooxygenases.
    Robinson RM; Klancher CA; Rodriguez PJ; Sobrado P
    Protein Sci; 2019 Jan; 28(1):90-99. PubMed ID: 30098072
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Flavin-dependent N-hydroxylating enzymes: distribution and application.
    Mügge C; Heine T; Baraibar AG; van Berkel WJH; Paul CE; Tischler D
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6481-6499. PubMed ID: 32504128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biochemical characterization of a flavin adenine dinucleotide-dependent monooxygenase, ornithine hydroxylase from Pseudomonas aeruginosa, suggests a novel reaction mechanism.
    Meneely KM; Lamb AL
    Biochemistry; 2007 Oct; 46(42):11930-7. PubMed ID: 17900176
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Flavin-dependent monooxygenases as a detoxification mechanism in insects: new insights from the arctiids (lepidoptera).
    Sehlmeyer S; Wang L; Langel D; Heckel DG; Mohagheghi H; Petschenka G; Ober D
    PLoS One; 2010 May; 5(5):e10435. PubMed ID: 20454663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flavin-containing monooxygenases in aging and disease: Emerging roles for ancient enzymes.
    Rossner R; Kaeberlein M; Leiser SF
    J Biol Chem; 2017 Jul; 292(27):11138-11146. PubMed ID: 28515321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of the somersault rearrangement in the oxidation step for flavin monooxygenases (FMO). A comparison between FMO and conventional xenobiotic oxidation with hydroperoxides.
    Bach RD
    J Phys Chem A; 2011 Oct; 115(40):11087-100. PubMed ID: 21888352
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Species, organ and cellular variation in the flavin-containing monooxygenase.
    Hodgson E; Levi PE
    Drug Metabol Drug Interact; 1988; 6(3-4):219-33. PubMed ID: 3078287
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-Component Flavin-Dependent Riboflavin Monooxygenase Degrades Riboflavin in Devosia riboflavina.
    Kanazawa H; Shigemoto R; Kawasaki Y; Oinuma KI; Nakamura A; Masuo S; Takaya N
    J Bacteriol; 2018 Jun; 200(12):. PubMed ID: 29610214
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Properties and Mechanisms of Flavin-Dependent Monooxygenases and Their Applications in Natural Product Synthesis.
    Deng Y; Zhou Q; Wu Y; Chen X; Zhong F
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269764
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Siderophore biosynthesis but not reductive iron assimilation is essential for Aspergillus fumigatus virulence.
    Schrettl M; Bignell E; Kragl C; Joechl C; Rogers T; Arst HN; Haynes K; Haas H
    J Exp Med; 2004 Nov; 200(9):1213-9. PubMed ID: 15504822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel flavonoid C-8 hydroxylase from Rhodotorula glutinis: identification, characterization and substrate scope.
    Dulak K; Sordon S; Matera A; Kozak B; Huszcza E; Popłoński J
    Microb Cell Fact; 2022 Aug; 21(1):175. PubMed ID: 36038906
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flavin-containing monooxygenases: catalytic mechanism and substrate specificities.
    Ziegler DM
    Drug Metab Rev; 1988; 19(1):1-32. PubMed ID: 3293953
    [No Abstract]   [Full Text] [Related]  

  • 37. Differential expression and activity of flavin-containing monooxygenases in euryhaline and stenohaline flatfishes indicates potential osmoregulatory role.
    Schlenk D; Peters L; Shehin-Johnson S; Hines RN; Livingstone DR
    Comp Biochem Physiol C Pharmacol Toxicol Endocrinol; 1995 Oct; 112(2):179-86. PubMed ID: 8788588
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tuning of p
    Pitsawong W; Chenprakhon P; Dhammaraj T; Medhanavyn D; Sucharitakul J; Tongsook C; van Berkel WJH; Chaiyen P; Miller AF
    J Biol Chem; 2020 Mar; 295(12):3965-3981. PubMed ID: 32014994
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction.
    Meneely KM; Barr EW; Bollinger JM; Lamb AL
    Biochemistry; 2009 May; 48(20):4371-6. PubMed ID: 19368334
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineered Bacterial Flavin-Dependent Monooxygenases for the Regiospecific Hydroxylation of Polycyclic Phenols.
    Herrmann S; Dippe M; Pecher P; Funke E; Pietzsch M; Wessjohann LA
    Chembiochem; 2022 Mar; 23(6):e202100480. PubMed ID: 34979058
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.