These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

489 related articles for article (PubMed ID: 21774750)

  • 1. Correlation of axial impact forces with knee joint forces and kinematics during simulated ski-landing.
    Yeow CH; Kong CY; Lee PV; Goh JC
    J Sports Sci; 2011 Aug; 29(11):1143-51. PubMed ID: 21774750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion.
    Wünschel M; Müller O; Lo J; Obloh C; Wülker N
    Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle.
    Markolf KL; Jackson SR; Foster B; McAllister DR
    J Orthop Res; 2014 Jan; 32(1):89-95. PubMed ID: 23996893
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct contribution of axial impact compressive load to anterior tibial load during simulated ski landing impact.
    Yeow CH; Lee PV; Goh JC
    J Biomech; 2010 Jan; 43(2):242-7. PubMed ID: 19863961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Restrained tibial rotation may prevent ACL injury during landing at different flexion angles.
    Mokhtarzadeh H; Ng A; Yeow CH; Oetomo D; Malekipour F; Lee PV
    Knee; 2015 Jan; 22(1):24-9. PubMed ID: 25456655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extent and distribution of tibial osteochondral disruption during simulated landing impact with axial tibial rotation restraint.
    Yeow CH; Lee PV; Goh JC
    J Biomech; 2010 Jul; 43(10):2010-6. PubMed ID: 20398906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupled motions under compressive load in intact and ACL-deficient knees: a cadaveric study.
    Liu-Barba D; Hull ML; Howell SM
    J Biomech Eng; 2007 Dec; 129(6):818-24. PubMed ID: 18067385
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The forces in the anterior cruciate ligament and knee kinematics during a simulated pivot shift test: A human cadaveric study using robotic technology.
    Kanamori A; Woo SL; Ma CB; Zeminski J; Rudy TW; Li G; Livesay GA
    Arthroscopy; 2000 Sep; 16(6):633-9. PubMed ID: 10976125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of ACL deficiency on mediolateral translation and varus-valgus rotation.
    Li G; Papannagari R; DeFrate LE; Yoo JD; Park SE; Gill TJ
    Acta Orthop; 2007 Jun; 78(3):355-60. PubMed ID: 17611849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strain Response of the Anterior Cruciate Ligament to Uniplanar and Multiplanar Loads During Simulated Landings: Implications for Injury Mechanism.
    Kiapour AM; Demetropoulos CK; Kiapour A; Quatman CE; Wordeman SC; Goel VK; Hewett TE
    Am J Sports Med; 2016 Aug; 44(8):2087-96. PubMed ID: 27159285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inhibition of anterior tibial translation or axial tibial rotation prevents anterior cruciate ligament failure during impact compression.
    Yeow CH; Rubab SK; Lee PV; Goh JC
    Am J Sports Med; 2009 Apr; 37(4):813-21. PubMed ID: 19204361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of quadriceps and hamstring muscle loading on knee kinematics and in-situ forces in the ACL.
    Li G; Rudy TW; Sakane M; Kanamori A; Ma CB; Woo SL
    J Biomech; 1999 Apr; 32(4):395-400. PubMed ID: 10213029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of axial tibial torque on the function of the anterior cruciate ligament: a biomechanical study of a simulated pivot shift test.
    Kanamori A; Zeminski J; Rudy TW; Li G; Fu FH; Woo SL
    Arthroscopy; 2002 Apr; 18(4):394-8. PubMed ID: 11951198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valgus plus internal rotation moments increase anterior cruciate ligament strain more than either alone.
    Shin CS; Chaudhari AM; Andriacchi TP
    Med Sci Sports Exerc; 2011 Aug; 43(8):1484-91. PubMed ID: 21266934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Posterior Tibial Slope Angle Correlates With Peak Sagittal and Frontal Plane Knee Joint Loading During Robotic Simulations of Athletic Tasks.
    Bates NA; Nesbitt RJ; Shearn JT; Myer GD; Hewett TE
    Am J Sports Med; 2016 Jul; 44(7):1762-70. PubMed ID: 27159295
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of ACL transection on internal tibial rotation in an in vitro simulated pivot landing.
    Oh YK; Kreinbrink JL; Ashton-Miller JA; Wojtys EM
    J Bone Joint Surg Am; 2011 Feb; 93(4):372-80. PubMed ID: 21325589
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of ACL Strain in the MCL-Deficient and MCL-Reconstructed Knee During Simulated Landing in a Cadaveric Model.
    Mancini EJ; Kohen R; Esquivel AO; Cracchiolo AM; Lemos SE
    Am J Sports Med; 2017 Apr; 45(5):1090-1094. PubMed ID: 28165760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tibial plateau geometry influences lower extremity biomechanics during landing.
    Shultz SJ; Schmitz RJ
    Am J Sports Med; 2012 Sep; 40(9):2029-36. PubMed ID: 22837428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slope-reducing tibial osteotomy decreases ACL-graft forces and anterior tibial translation under axial load.
    Imhoff FB; Mehl J; Comer BJ; Obopilwe E; Cote MP; Feucht MJ; Wylie JD; Imhoff AB; Arciero RA; Beitzel K
    Knee Surg Sports Traumatol Arthrosc; 2019 Oct; 27(10):3381-3389. PubMed ID: 30687890
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changing Sagittal-Plane Landing Styles to Modulate Impact and Tibiofemoral Force Magnitude and Directions Relative to the Tibia.
    Shimokochi Y; Ambegaonkar JP; Meyer EG
    J Athl Train; 2016 Sep; 51(9):669-681. PubMed ID: 27723362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.