These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 21774964)

  • 1. How does an Al-hyperaccumulator plant respond to a natural field gradient of soil phytoavailable Al?
    Serrano HC; Pinto MJ; Martins-Loução MA; Branquinho C
    Sci Total Environ; 2011 Sep; 409(19):3749-56. PubMed ID: 21774964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisiting the plant hyperaccumulation criteria to rare plants and earth abundant elements.
    Branquinho C; Serrano HC; Pinto MJ; Martins-Loução MA
    Environ Pollut; 2007 Mar; 146(2):437-43. PubMed ID: 17046127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aluminium stress disrupts metabolic performance of Plantago almogravensis plantlets transiently.
    Grevenstuk T; Moing A; Maucourt M; Deborde C; Romano A
    Biometals; 2015 Dec; 28(6):997-1007. PubMed ID: 26433896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum alfredii Hance under natural conditions.
    Long XX; Zhang YG; Jun D; Zhou Q
    Bull Environ Contam Toxicol; 2009 Apr; 82(4):460-7. PubMed ID: 19183820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminum.
    Naik D; Smith E; Cumming JR
    Tree Physiol; 2009 Mar; 29(3):423-36. PubMed ID: 19203961
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes on organic acid secretion and accumulation in Plantago almogravensis Franco and Plantago algarbiensis Samp. under aluminum stress.
    Martins N; Gonçalves S; Andrade PB; Valentão P; Romano A
    Plant Sci; 2013 Jan; 198():1-6. PubMed ID: 23199681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aluminium-phosphate interactions in the rhizosphere of two bean species: Phaseolus lunatus L. and Phaseolus vulgaris L.
    Mimmo T; Ghizzi M; Cesco S; Tomasi N; Pinton R; Puschenreiter M
    J Sci Food Agric; 2013 Dec; 93(15):3891-6. PubMed ID: 24037763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance.
    Deng W; Luo K; Li D; Zheng X; Wei X; Smith W; Thammina C; Lu L; Li Y; Pei Y
    J Exp Bot; 2006; 57(15):4235-43. PubMed ID: 17101715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effects of simulated acid rain on internal nutrient cycling and the ratios of Mg, Al, Ca, N, and P in tea plants of a subtropical plantation.
    Hu XF; Wu AQ; Wang FC; Chen FS
    Environ Monit Assess; 2019 Jan; 191(2):99. PubMed ID: 30680466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phytoextraction of weathered p,p'-DDE by zucchini (Cucurbita pepo) and cucumber (Cucumis sativus) under different cultivation conditions.
    Wang X; White JC; Gent MP; Iannucci-Berger W; Eitzer BD; Mattina MI
    Int J Phytoremediation; 2004; 6(4):363-85. PubMed ID: 15696707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amelioration of iron toxicity: A mechanism for aluminum-induced growth stimulation in tea plants.
    Hajiboland R; Barceló J; Poschenrieder C; Tolrà R
    J Inorg Biochem; 2013 Nov; 128():183-7. PubMed ID: 23910825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-tolerance to heavy metals in Plantago arenaria Waldst. & Kit.: adaptative versus constitutive characters.
    Remon E; Bouchardon JL; Faure O
    Chemosphere; 2007 Aug; 69(1):41-7. PubMed ID: 17568652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chrysotile dissolution in the rhizosphere of the nickel hyperaccumulator Leptoplax emarginata.
    Chardot-Jacques V; Calvaruso C; Simon B; Turpault MP; Echevarria G; Morel JL
    Environ Sci Technol; 2013 Mar; 47(6):2612-20. PubMed ID: 23373689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Al-Fe interactions and growth enhancement in Melastoma malabathricum and Miscanthus sinensis dominating acid sulphate soils.
    Watanabe T; Jansen S; Osaki M
    Plant Cell Environ; 2006 Dec; 29(12):2124-32. PubMed ID: 17081246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lead uptake, toxicity, and detoxification in plants.
    Pourrut B; Shahid M; Dumat C; Winterton P; Pinelli E
    Rev Environ Contam Toxicol; 2011; 213():113-36. PubMed ID: 21541849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of iron plaque on uptake and accumulation of Cd by rice (Oryza sativa L.) seedlings grown in soil.
    Liu H; Zhang J; Christie P; Zhang F
    Sci Total Environ; 2008 May; 394(2-3):361-8. PubMed ID: 18325566
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rhizosphere characteristics of zinc hyperaccumulator Sedum alfredii involved in zinc accumulation.
    Li T; Di Z; Islam E; Jiang H; Yang X
    J Hazard Mater; 2011 Jan; 185(2-3):818-23. PubMed ID: 20970251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conostegia xalapensis (Melastomataceae): an aluminum accumulator plant.
    González-Santana IH; Márquez-Guzmán J; Cram-Heydrich S; Cruz-Ortega R
    Physiol Plant; 2012 Feb; 144(2):134-45. PubMed ID: 21973178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular instability induced by aluminum stress in Plantago species.
    Correia S; Matos M; Ferreira V; Martins N; Gonçalves S; Romano A; Pinto-Carnide O
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Aug; 770():105-11. PubMed ID: 25344171
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mobilization and acquisition of sparingly soluble P-sources by Brassica cultivars under P-starved environment I. Differential growth response, P-efficiency characteristics and P-remobilization.
    Akhtar MS; Oki Y; Adachi T
    J Integr Plant Biol; 2009 Nov; 51(11):1008-23. PubMed ID: 19903223
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.